Answer:
we conclude that:
If 4x - 6≠4, then 2x–5≠5 is the contrapositive of a conditional statement if 2x -5=5, then 4x-6=14.
Step-by-step explanation:
We know that the contrapositive of a conditional statement of the form "If p then q" is termed as "If ~q then ~p".
In other words, it is symbolically represented as:
' ~q ~p is the contrapositive of p q '
For example, the contrapositive of "If it is a rainy day, then they suspend the match" is "If they do not suspend the match, then it won't be a rainy day."
Given
p: 2x -5=5
q: 4x-6=14
As the contrapositive of a conditional statement of the form "If p then q" is termed as "If ~q then ~p
Thus, we conclude that:
If 4x - 6≠4, then 2x–5≠5 is the contrapositive of a conditional statement if 2x -5=5, then 4x-6=14.
Answer:
(
1
,
∞
)
Step-by-step explanation:
Interval notation rounds up to infinite
Answer:
full question
Step-by-step explanation:
full question
Answer:
X intercepts: -5,0 and -1,0
Solutions: -6, 5 and 0,5
Vertex: -3,-4
Axis of symmetry: X=-3
Step-by-step explanation: