1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
sergiy2304 [10]
3 years ago
8

How to solve y=2x+5 and y=3x-1 by a system of linear equations by substitution

Mathematics
2 answers:
vichka [17]3 years ago
8 0
2x +5 = 3x -1
-2x -2x
5= 1x -1
+1 +1
6= 1x

6/1 = 6

X= 6
Ronch [10]3 years ago
5 0

Answer:

x = 6, y = 17

Step-by-step explanation:

These equations are both equal to y.

Substitute 3x - 1 in the y value of the first equation.

3x - 1 = 2x + 5

Subtract 2x.

x - 1 = 5

Add 1 to both sides

x = 6

Then substitute this x value into the first equation.

y = 2x + 5

y = 2(6) + 5 = 12 + 5 = 17

You might be interested in
These map tests give me anxiety or however you spell it
Vesnalui [34]

Answer:

Im sorry i dont know what im supposed to be answering

step-by-step explanation:

5 0
3 years ago
Simplify 14(1.2)^10?
noname [10]
1790988582563.6448is your answer. All you do is multiply 14 times 1.2, which equals 16.8. Then you do 16.8 times itself. 16.8 x 16.8 = 282.24. Then 282.24 times itself, and so on so forth.
8 0
4 years ago
Find gradient <br><br>xe^y + 4 ln y = x² at (1, 1)​
cricket20 [7]

xe^y+4\ln y=x^2

Differentiate both sides with respect to <em>x</em>, assuming <em>y</em> = <em>y</em>(<em>x</em>).

\dfrac{\mathrm d(xe^y+4\ln y)}{\mathrm dx}=\dfrac{\mathrm d(x^2)}{\mathrm dx}

\dfrac{\mathrm d(xe^y)}{\mathrm dx}+\dfrac{\mathrm d(4\ln y)}{\mathrm dx}=2x

\dfrac{\mathrm d(x)}{\mathrm dx}e^y+x\dfrac{\mathrm d(e^y)}{\mathrm dx}+\dfrac4y\dfrac{\mathrm dy}{\mathrm dx}=2x

e^y+xe^y\dfrac{\mathrm dy}{\mathrm dx}+\dfrac4y\dfrac{\mathrm dy}{\mathrm dx}=2x

Solve for d<em>y</em>/d<em>x</em> :

e^y+\left(xe^y+\dfrac4y\right)\dfrac{\mathrm dy}{\mathrm dx}=2x

\left(xe^y+\dfrac4y\right)\dfrac{\mathrm dy}{\mathrm dx}=2x-e^y

\dfrac{\mathrm dy}{\mathrm dx}=\dfrac{2x-e^y}{xe^y+\frac4y}

If <em>y</em> ≠ 0, we can write

\dfrac{\mathrm dy}{\mathrm dx}=\dfrac{2xy-ye^y}{xye^y+4}

At the point (1, 1), the derivative is

\dfrac{\mathrm dy}{\mathrm dx}\bigg|_{x=1,y=1}=\boxed{\dfrac{2-e}{e+4}}

4 0
3 years ago
Kira buys a robot priced at $263. If the sale tax is 4% , how much tax will kira pay
12345 [234]

Answer:$10.52

Step-by-step explanation:

8 0
3 years ago
Read 2 more answers
Describe how you think you can use U.S. traditional multiplication to multiply a 1 digit number by any size number .
egoroff_w [7]
Well for example 4x1=4 hope this helps
8 0
3 years ago
Other questions:
  • Given that (2,3) is on the graph of f(x),find the corresponding point for the function f(x) - 4
    14·2 answers
  • PLZ HELP ASAP FEATURES OF A CIRCLE FROM ITS EXPANDED EQUATION LAST ONE
    9·1 answer
  • Susie buys 1/2 lb of tomatoes for $1.99, what is the unit rate of the tomatoes?
    6·2 answers
  • Which is greater 16.4 or 16.099
    13·2 answers
  • True or false ?<br>1.5 &gt; 15%​
    7·1 answer
  • 3 more than the quotient of a number and 8 is 27.
    10·1 answer
  • Georgia is making fruit punch. She uses 650 milliliters
    8·1 answer
  • Which graph represents a function that is decreasing at a nonconstant rate?
    7·1 answer
  • Easy question in photo
    5·2 answers
  • Plzzzzzzzzzzzzzzzzzzzzz help
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!