Answer:
Hay 200 botellas de 5 litros y 1000 botellas de 2 litros.
Step-by-step explanation:
Un sistema de ecuaciones lineales es un conjunto de dos o más ecuaciones de primer grado, en el cual se relacionan dos o más incógnitas.
Resolver un sistema de ecuaciones consiste en encontrar el valor de cada incógnita para que se cumplan todas las ecuaciones del sistema.
En este caso, las variables a calcular son:
- x= cantidad de botellas de 2 litros.
- y= cantidad de botellas de 5 litros.
Una empresa aceitera ha envasado 3000 litros de aceite en 1200 botellas de dos y de cinco litros. Entonces es posible plantear el siguiente sistema de ecuaciones:

Existen varios métodos para resolver un sistema de ecuaciones. Resolviendo por el método de sustitución, que consiste en despejar o aislar una de las incógnitas y sustituir su expresión en la otra ecuación, despejas x de la segunda ecuación:
x= 1200 - y
Sustituyendo la expresión en la primer ecuación:
2*(1200 - y) + 5*y=3000
Resolviendo se obtiene:
2*1200 - 2*y + 5*y= 3000
2400 +3*y= 3000
3*y= 3000 - 2400
3*y= 600
y= 600÷3
y= 200
Reemplazando en la expresión x= 1200 - y:
x= 1200 - y
x=1200 -200
x= 1000
<u><em>Hay 200 botellas de 5 litros y 1000 botellas de 2 litros.</em></u>
Answer:
23. x = 4; DE = 44
24. x = 25; DS = 28
Step-by-step explanation:
23. Point S is the midpoint of DE, so ...
DS = SE
3x +10 = 6x -2
12 = 3x . . . . . . . . . add 2-3x
4 = x . . . . . . . . . . . divide by 3
Then DS has length ...
DS = 3x +10 = 12 +10 = 22
and DE is twice that length, so ...
DE = 44
__
24. DS is half the length of DE, so is ...
DS = DE/2 = 56/2
DS = 28
Then x can be found from ...
DS = x +3
28 -3 = x = 25 . . . . . substitute value for DS
_____
<em>Comment on problem 24</em>
Sometimes it is easier to work parts of a problem out of sequence. Here, finding DS first makes finding x easier.
Answer:
-9
Step-by-step explanation:
Answer:
d
Step-by-step explanation:
To solve this problem, let us first remember that
probability is:
Probability = number of successful events / number of total
events
Now, let us first calculate the probability of getting a
blue marble. There are 20 blue marbles out of 50 total marbles, therefore the
probability is:
P (blue marble) = 20 / 50 = 0.4
Next, let us calculate for the probability of landing tails
up. There are 22 tails success out of 50 times the coin was tossed, therefore
the probability is:
P (tails) = 22 / 50 = 0.44
Finally, since we want to find the Probability of getting
blue and Probability of landing tails, we multiply the two:
P (blue and tails) = 0.4 * 0.44
P (blue and tails) = 0.176 (ANSWER)
Now if the choices are in fraction:
P (blue and tails) = (20 / 50) (22 / 50) = 440 / 2500