Answer:
Part 9) ![x=12](https://tex.z-dn.net/?f=x%3D12)
Part 10) ![x=12\°](https://tex.z-dn.net/?f=x%3D12%5C%C2%B0)
Part 11) ![x=10\°](https://tex.z-dn.net/?f=x%3D10%5C%C2%B0)
Part 12) ![x=11\°](https://tex.z-dn.net/?f=x%3D11%5C%C2%B0)
Part 13)
a) ![SU=4\ units](https://tex.z-dn.net/?f=SU%3D4%5C%20units)
b) m∠VWX=![40\°](https://tex.z-dn.net/?f=40%5C%C2%B0)
c) m∠WVX=![50\°](https://tex.z-dn.net/?f=50%5C%C2%B0)
d) m∠XTV=![60\°](https://tex.z-dn.net/?f=60%5C%C2%B0)
e) m∠XVT=![30\°](https://tex.z-dn.net/?f=30%5C%C2%B0)
Step-by-step explanation:
Part 9) we have that
----->by SSA
solve for x
![2x=24](https://tex.z-dn.net/?f=2x%3D24)
![x=12](https://tex.z-dn.net/?f=x%3D12)
Part 10)
In the isosceles triangle of the left the vertex angle is equal to
![180\°-68\°*2=44\°](https://tex.z-dn.net/?f=180%5C%C2%B0-68%5C%C2%B0%2A2%3D44%5C%C2%B0)
Find the measure of angle 2
m∠2=![90\°-44\°=46\°](https://tex.z-dn.net/?f=90%5C%C2%B0-44%5C%C2%B0%3D46%5C%C2%B0)
m∠2=![4x-2](https://tex.z-dn.net/?f=4x-2)
![4x-2=46\°](https://tex.z-dn.net/?f=4x-2%3D46%5C%C2%B0)
solve for x
![4x=48\°](https://tex.z-dn.net/?f=4x%3D48%5C%C2%B0)
![x=12\°](https://tex.z-dn.net/?f=x%3D12%5C%C2%B0)
Part 11)
Find the base angle in the isosceles triangle of the top
![180\°-118\°=62\°](https://tex.z-dn.net/?f=180%5C%C2%B0-118%5C%C2%B0%3D62%5C%C2%B0)
Find the vertex angle in the isosceles triangle of the top
![180\°-2*62\°=56\°](https://tex.z-dn.net/?f=180%5C%C2%B0-2%2A62%5C%C2%B0%3D56%5C%C2%B0)
Find the vertex angle 2 in the isosceles triangle of the bottom
------> this is the measure of angle 2
m∠2=![124\°](https://tex.z-dn.net/?f=124%5C%C2%B0)
m∠2=![12x+4](https://tex.z-dn.net/?f=12x%2B4)
![12x+4=124\°](https://tex.z-dn.net/?f=12x%2B4%3D124%5C%C2%B0)
![12x=120\°](https://tex.z-dn.net/?f=12x%3D120%5C%C2%B0)
![x=10\°](https://tex.z-dn.net/?f=x%3D10%5C%C2%B0)
Part 12)
m∠2=
------> by corresponding angles
m∠2=![13x+3](https://tex.z-dn.net/?f=13x%2B3)
![13x+3=146\°](https://tex.z-dn.net/?f=13x%2B3%3D146%5C%C2%B0)
![13x=143\°](https://tex.z-dn.net/?f=13x%3D143%5C%C2%B0)
![x=11\°](https://tex.z-dn.net/?f=x%3D11%5C%C2%B0)
Part 13)
a) we have that
SU=UW ------> given problem
![3x+1=x+3](https://tex.z-dn.net/?f=3x%2B1%3Dx%2B3)
![2x=2](https://tex.z-dn.net/?f=2x%3D2)
![x=1](https://tex.z-dn.net/?f=x%3D1)
therefore
![SU=3x+1=3+1=4](https://tex.z-dn.net/?f=SU%3D3x%2B1%3D3%2B1%3D4)
![SU=4\ units](https://tex.z-dn.net/?f=SU%3D4%5C%20units)
b) we know that
m∠VWX=![4y\°](https://tex.z-dn.net/?f=4y%5C%C2%B0)
in the right triangle UVW find the value of y
The sum of the internal angles of a triangle is equal to ![180\°](https://tex.z-dn.net/?f=180%5C%C2%B0)
so
![180\°=4y+90\°+50\°](https://tex.z-dn.net/?f=180%5C%C2%B0%3D4y%2B90%5C%C2%B0%2B50%5C%C2%B0)
![180\°=4y+140\°](https://tex.z-dn.net/?f=180%5C%C2%B0%3D4y%2B140%5C%C2%B0)
![4y=40\°](https://tex.z-dn.net/?f=4y%3D40%5C%C2%B0)
![y=10\°](https://tex.z-dn.net/?f=y%3D10%5C%C2%B0)
so
m∠VWX=![4y\°=40\°](https://tex.z-dn.net/?f=4y%5C%C2%B0%3D40%5C%C2%B0)
Part c) we know that
in the right triangle VWX
The sum of the internal angles of a triangle is equal to ![180\°](https://tex.z-dn.net/?f=180%5C%C2%B0)
so
m∠WVX=![180\°-(4y+90\°)](https://tex.z-dn.net/?f=180%5C%C2%B0-%284y%2B90%5C%C2%B0%29)
m∠WVX=![180\°-(40\°+90\°)](https://tex.z-dn.net/?f=180%5C%C2%B0-%2840%5C%C2%B0%2B90%5C%C2%B0%29)
m∠WVX=![50\°](https://tex.z-dn.net/?f=50%5C%C2%B0)
Part d) we know that
in the right triangle XTV
The sum of the internal angles of a triangle is equal to ![180\°](https://tex.z-dn.net/?f=180%5C%C2%B0)
so
m∠XTV=![180\°-(40\°-y+90\°)](https://tex.z-dn.net/?f=180%5C%C2%B0-%2840%5C%C2%B0-y%2B90%5C%C2%B0%29)
m∠XTV=![180\°-(40\°-10\°+90\°)](https://tex.z-dn.net/?f=180%5C%C2%B0-%2840%5C%C2%B0-10%5C%C2%B0%2B90%5C%C2%B0%29)
m∠XTV=![60\°](https://tex.z-dn.net/?f=60%5C%C2%B0)
Part e) we know that
m∠XVT=![(40\°-y)](https://tex.z-dn.net/?f=%2840%5C%C2%B0-y%29)
substitute the value of y
m∠XVT=![(40\°-10\°)](https://tex.z-dn.net/?f=%2840%5C%C2%B0-10%5C%C2%B0%29)
m∠XVT=![30\°](https://tex.z-dn.net/?f=30%5C%C2%B0)