The area to the right of z = 1.35 is 0.0885 and the area to the left of -0.47 is 0.3192.
<h3>How to compute the values?.</h3>
Given z = 1.35
= 1- P(z < 1.35)
= 1- 0.9115
= 0.0885
The area to the left of -0.47 will be:
= 1 - P(z < 0.47)
= 1 - 0.6808
= 0.3192
Learn more about normal curve on:
brainly.com/question/6758792
#SPJ1
Supposing, for the sake of illustration, that the mean is 31.2 and the std. dev. is 1.9.
This probability can be calculated by finding z-scores and their corresponding areas under the std. normal curve.
34 in - 31.2 in
The area under this curve to the left of z = -------------------- = 1.47 (for 34 in)
1.9
32 in - 31.2 in
and that to the left of 32 in is z = ---------------------- = 0.421
1.9
Know how to use a table of z-scores to find these two areas? If not, let me know and I'll go over that with you.
My TI-83 calculator provided the following result:
normalcdf(32, 34, 31.2, 1.9) = 0.267 (answer to this sample problem)
Answer:
tfbgf
Step-by-step explanation:
Answer: rhombus
Step-by-step explanation:
By inspection, we can tell that there are no right angles, so we can determine it is not a square or a rectangle.
From the options, it is implied that it is a parallelogram, so to determine if it is a rhombus, we can determine if there is a pair of consecutive congruent sides.
By the distance formula,

As AB=BC, there is indeed a pair of consecutive congruent sides, and thus the most specific classification is a <em>rhombus</em>