1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
harkovskaia [24]
3 years ago
9

What is the equation of the circle with center (4, 4) that passes through the point (10, 14)?

Mathematics
2 answers:
zhuklara [117]3 years ago
7 0

Answer:

The answer to your question is      (x - 4)² + (y - 4)² = 136

Step-by-step explanation:

Data

C (4, 4)

P (10, 14)

Process

1.- Calculate the distance from the center to the point

dCP = \sqrt{(10 - 4)^{2} + (14 - 4)^{2}}

dCP = \sqrt{6^{2} + 10^{2}}

dCP = \sqrt{36 + 100}

dCP = \sqrt{136}

2.- Calculate the equation of the circle

     ( x - 4)² + (y - 4)² = (\sqrt{136})²

     (x - 4)² + (y - 4)² = 136

Anna11 [10]3 years ago
3 0

Answer:

(x - 4)² + (y - 4)² = 136 is the answer.

You might be interested in
How to order -14.4, -14, -14 1/5 from least to greatest
ElenaW [278]
Think of  thermometer the negative degrees are the coldest so are the lowest on the vertical column

first convert -14 1/5 to decimals  =  -14.2

so the order is 

-14.4 , -14 1/5 , -14.

8 0
3 years ago
If a positive number a is 150 percent of 4p, and if p is
Andrej [43]
Sorry but this isnt even a full question.......
7 0
3 years ago
Let and be differentiable vector fields and let a and b be arbitrary real constants. Verify the following identities.
elena-14-01-66 [18.8K]

The given identities are verified by using operations of the del operator such as divergence and curl of the given vectors.

<h3>What are the divergence and curl of a vector field?</h3>

The del operator is used for finding the divergence and the curl of a vector field.

The del operator is given by

\nabla=\^i\frac{\partial}{\partial x}+\^j \frac{\partial}{\partial y}+\^k\frac{\partial}{\partial z}

Consider a vector field F=x\^i+y\^j+z\^k

Then the divergence of the vector F is,

div F = \nabla.F = (\^i\frac{\partial}{\partial x}+\^j \frac{\partial}{\partial y}+\^k\frac{\partial}{\partial z}).(x\^i+y\^j+z\^k)

and the curl of the vector F is,

curl F = \nabla\times F = \^i(\frac{\partial Fz}{\partial y}- \frac{\partial Fy}{\partial z})+\^j(\frac{\partial Fx}{\partial z}-\frac{\partial Fz}{\partial x})+\^k(\frac{\partial Fy}{\partial x}-\frac{\partial Fx}{\partial y})

<h3>Calculation:</h3>

The given vector fields are:

F1 = M\^i + N\^j + P\^k and F2 = Q\^i + R\^j + S\^k

1) Verifying the identity: \nabla.(aF1+bF2)=a\nabla.F1+b\nabla.F2

Consider L.H.S

⇒ \nabla.(aF1+bF2)

⇒ \nabla.(a(M\^i + N\^j + P\^k) + b(Q\^i + R\^j + S\^k))

⇒ \nabla.((aM+bQ)\^i+(aN+bR)\^j+(aP+bS)\^k)

⇒ (\^i\frac{\partial}{\partial x}+\^j \frac{\partial}{\partial y}+\^k\frac{\partial}{\partial z}).((aM+bQ)\^i+(aN+bR)\^j+(aP+bS)\^k)

Applying the dot product between these two vectors,

⇒ \frac{\partial (aM+bQ)}{\partial x}+ \frac{\partial (aN+bR)}{\partial y}+\frac{\partial (aP+bS)}{\partial z} ...(1)

Consider R.H.S

⇒ a\nabla.F1+b\nabla.F2

So,

\nabla.F1=(\^i\frac{\partial}{\partial x}+\^j \frac{\partial}{\partial y}+\^k\frac{\partial}{\partial z}).(M\^i + N\^j + P\^k)

⇒ \nabla.F1=\frac{\partial M}{\partial x}+\frac{\partial N}{\partial y}+\frac{\partial P}{\partial z}

\nabla.F2=(\^i\frac{\partial}{\partial x}+\^j \frac{\partial}{\partial y}+\^k\frac{\partial}{\partial z}).(Q\^i + R\^j + S\^k)

⇒ \nabla.F1=\frac{\partial Q}{\partial x}+\frac{\partial R}{\partial y}+\frac{\partial S}{\partial z}

Then,

a\nabla.F1+b\nabla.F2=a(\frac{\partial M}{\partial x}+\frac{\partial N}{\partial y}+\frac{\partial P}{\partial z})+b(\frac{\partial Q}{\partial x}+\frac{\partial R}{\partial y}+\frac{\partial S}{\partial z})

⇒ \frac{\partial (aM+bQ)}{\partial x}+ \frac{\partial (aN+bR)}{\partial y}+\frac{\partial (aP+bS)}{\partial z} ...(2)

From (1) and (2),

\nabla.(aF1+bF2)=a\nabla.F1+b\nabla.F2

2) Verifying the identity: \nabla\times(aF1+bF2)=a\nabla\times F1+b\nabla\times F2

Consider L.H.S

⇒ \nabla\times(aF1+bF2)

⇒ (\^i\frac{\partial}{\partial x}+\^j \frac{\partial}{\partial y}+\^k\frac{\partial}{\partial z})\times(a(M\^i+N\^j+P\^k)+b(Q\^i+R\^j+S\^k))

⇒ (\^i\frac{\partial}{\partial x}+\^j \frac{\partial}{\partial y}+\^k\frac{\partial}{\partial z})\times ((aM+bQ)\^i+(aN+bR)\^j+(aP+bS)\^k)

Applying the cross product,

\^i(\^k\frac{\partial (aP+bS)}{\partial y}- \^j\frac{\partial (aN+bR)}{\partial z})+\^j(\^i\frac{\partial (aM+bQ)}{\partial z}-\^k\frac{\partial (aP+bS)}{\partial x})+\^k(\^j\frac{\partial (aN+bR)}{\partial x}-\^i\frac{\partial (aM+bQ)}{\partial y}) ...(3)

Consider R.H.S,

⇒ a\nabla\times F1+b\nabla\times F2

So,

a\nabla\times F1=a(\nabla\times (M\^i+N\^j+P\^k))

⇒ \^i(\frac{\partial aP\^k}{\partial y}- \frac{\partial aN\^j}{\partial z})+\^j(\frac{\partial aM\^i}{\partial z}-\frac{\partial aP\^k}{\partial x})+\^k(\frac{\partial aN\^j}{\partial x}-\frac{\partial aM\^i}{\partial y})

a\nabla\times F2=b(\nabla\times (Q\^i+R\^j+S\^k))

⇒ \^i(\frac{\partial bS\^k}{\partial y}- \frac{\partial bR\^j}{\partial z})+\^j(\frac{\partial bQ\^i}{\partial z}-\frac{\partial bS\^k}{\partial x})+\^k(\frac{\partial bR\^j}{\partial x}-\frac{\partial bQ\^i}{\partial y})

Then,

a\nabla\times F1+b\nabla\times F2 =

\^i(\^k\frac{\partial (aP+bS)}{\partial y}- \^j\frac{\partial (aN+bR)}{\partial z})+\^j(\^i\frac{\partial (aM+bQ)}{\partial z}-\^k\frac{\partial (aP+bS)}{\partial x})+\^k(\^j\frac{\partial (aN+bR)}{\partial x}-\^i\frac{\partial (aM+bQ)}{\partial y})

...(4)

Thus, from (3) and (4),

\nabla\times(aF1+bF2)=a\nabla\times F1+b\nabla\times F2

Learn more about divergence and curl of a vector field here:

brainly.com/question/4608972

#SPJ4

Disclaimer: The given question on the portal is incomplete.

Question: Let F1 = M\^i + N\^j + P\^k and F2 = Q\^i + R\^j + S\^k be differential vector fields and let a and b arbitrary real constants. Verify the following identities.

1)\nabla.(aF1+bF2)=a\nabla.F1+b\nabla.F2\\2)\nabla\times(aF1+bF2)=a\nabla\times F1+b\nabla\times F2

8 0
2 years ago
What is family ?<br><br><br><br>saw this is wuestion​
Ivenika [448]

MARK ME AS BRAINLIEST <em>OK</em><em> </em><em>FRIEND</em>

Family is a group of people who want as well as choose to be together embraced by a bond so powerful and strong that not even the slightest test of trials and troubles can breach.Family means nobody gets left behind or forgotten.

5 0
2 years ago
Read 2 more answers
1. Let L be a list of numbers in non-decreasing order, and x be a given number. Describe an algorithm that counts the number of
e-lub [12.9K]

Answer:

Algorithm

Start

Int n // To represent the number of array

Input n

Int countsearch = 0

float search

Float [] numbers // To represent an array of non decreasing number

// Input array elements but first Initialise a counter element

Int count = 0, digit

Do

// Check if element to be inserted is the first element

If(count == 0) Then

Input numbers[count]

Else

lbl: Input digit

If(digit > numbers[count-1]) then

numbers[count] = digit

Else

Output "Number must be greater than the previous number"

Goto lbl

Endif

Endif

count = count + 1

While(count<n)

count = 0

// Input element to count

input search

// Begin searching and counting

Do

if(numbers [count] == search)

countsearch = countsearch+1;

End if

While (count < n)

Output count

Program to illustrate the above

// Written in C++

// Comments are used for explanatory purpose

#include<iostream>

using namespace std;

int main()

{

// Variable declaration

float [] numbers;

int n, count;

float num, searchdigit;

cout<<"Number of array elements: ";

cin>> n;

// Enter array element

for(int I = 0; I<n;I++)

{

if(I == 0)

{

cin>>numbers [0]

}

else

{

lbl: cin>>num;

if(num >= numbers [I])

{

numbers [I] = num;

}

else

{

goto lbl;

}

}

// Search for a particular number

int search;

cin>>searchdigit;

for(int I = 0; I<n; I++)

{

if(numbers[I] == searchdigit

search++

}

}

// Print result

cout<<search;

return 0;

}

8 0
3 years ago
Other questions:
  • A rod was cut into 3 piece the length of the 3 piece are in the ratio of 5 : 3 :2 if the shortest is 25cm how long was the rod ​
    7·1 answer
  • What is 69,000 rounded to the nearest hundred
    6·2 answers
  • (please help!!!) For each subject, choose an appropriate scale for a drawing that fits on a regular sheet of paper. Not all of t
    9·1 answer
  • Taylor and Jillian purchased pieces of gold jewelry. Taylor purchased 0.4 oz of 18-karat gold, and Jillian purchased 1.05 oz of
    13·1 answer
  • Three times jasmines age equals twice Jamals age. Two times Jamals age plus three rimes jasmines age equal 48. How old is Jamal?
    5·1 answer
  • Explain why you think it is or is not possible to give the exact length of the circumference as a decimal.
    11·1 answer
  • -2(-5+8x)+6=40-8x<br><br> With steps please
    14·1 answer
  • Find the area of the triangle.<br> 3 cm<br> 11 cm<br> C с<br> 14.5 cm
    15·1 answer
  • Letx be the profit of a company and let y be the amount the company owner mais, both in thousands of dollars. The graph shows th
    7·1 answer
  • Please heeeeeeeeeeeeeeeeeeeeeeeeeelp
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!