1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
schepotkina [342]
4 years ago
10

1. You have a Co-Cr alloy with Young's Modulus: 645 MPa, Poisson ratio 0.28, and yield strength 501 MPa for that alloy when used

in a medical device. From these data estimate the following for a 1 x 2 cm cross-section bar of the alloy having length 12 cm: a. The maximum tensile load that can be applied in the longitudinal direction of the bar without inducing plastic deformation. b. The length and cross-sectional area of the bar at its tensile elastic limit.
Engineering
1 answer:
bazaltina [42]4 years ago
3 0

Answer:

F_x = 100,200 N

x' = 21.321 cm ... Length

y' =0.7825 cm

z' = 1.565 cm

A' = ( 0.783 x 1.565 ) cm  

Explanation:

Given:

- The Modulus of Elasticity E = 645 MPa

- The poisson ratio v = 0.28

- The Yield Strength Y = 501 MPa

- The Length along x-direction x = 12 cm

- The length along y-direction y = 1 cm

- The length along z--direction z = 2 cm

Find:

The maximum tensile load that can be applied in the longitudinal direction of the bar without inducing plastic deformation. b. The length and cross-sectional area of the bar at its tensile elastic limit.

Solution:

- The Tensile forces within the limit of proportionality is given as:

                                   F_i = б_i*A_jk

- A maximum tensile Force F_x along x direction can be given as:

                                   F_x = Y*A_yz

                                   F_x = 501*( 0.01*0.02)*10^6

                                  F_x = 100,200 N

- The corresponding strains in x, y and z direction due to F_x are:

                                    ξ_x = Y / E

                                    ξ_x = 501 / 645 = 0.7767

                                    ξ_y = ξ_z = -v*Y / E

                                    ξ_y = ξ_z = -0.28*501 / 645 = - 0.2175

- The corresponding change in lengths at tensile elastic stress are:

                                    Δx = x*ξ_x = 12*0.7767 = 9.321 cm

                                    Δy = y*ξ_y = - 1*0.2175 = -0.2175 cm

                                    Δz = z*ξ_z = - 2*0.2175 = -0.435 cm

- The final lengths are:

                                    x' = x + Δx = 12 + 9.321 = 21.321 cm

                                    y' = y + Δy = 1 - 0.2175 = 0.7825 cm

                                    z' = z + Δz = 2 - 0.435 = 1.565 cm

                                       

You might be interested in
A three-phase voltage source with a terminal voltage of 22kV is connected to a three-phase transformer rated 5MVA 22kV/220V. The
amid [387]

Answer:

A) See Attachment B) See Attachment C) 186.153

Explanation:

C) Per phase Voltage= 220/∛3

                                  = 6.037

S=V²/Z

  = (6.037)²/(0.01+i0.05)

  = 62051.282-i310256.41

Active power losses per phase= 62.051kW

total Active power losses= 62.051×3

                                         =186.153kW

6 0
4 years ago
The critical resolved shear stress for iron is 27 MPa (4000 psi). Determine the maximum possible yield strength for a single cry
jasenka [17]

Answer:

Answer is mentioned below.

Explanation:

Answer: Calculation of maximum yield strength for a single crystal of Fe pulled in tension is shown in the image attached .

value of max. Yield strength= 54MPa

7 0
4 years ago
In details and step-by-step, show how you apply the Bubble Sort algorithm on the following list of values. Your answer should sh
astraxan [27]

( 12 17 18 19 25 )

<u>Explanation:</u>

<u>First Pass:</u>

( 19 18 25 17 12 ) –> ( 18 19 25 17 12 ), Here, algorithm compares the first two elements, and swaps since 19 > 18.

( 18 19 25 17 12 ) –> ( 18 19 25 17 12 ), Now, since these elements are already in order (25 > 19), algorithm does not swap them.

( 18 19 25 17 12 ) –> ( 18 19 17 25 12 ), Swap since 25 > 17

( 18 19 17 25 12 ) –> ( 18 19 17 12 25 ), Swap since 25 > 12

<u>Second Pass:</u>

( 18 19 17 12 25 ) –> ( 18 19 17 12 25 )

( 18 19 17 12 25 ) –> ( 18 17 19 12 25 ), Swap since 19 > 17

( 18 17 19 12 25 ) –> ( 18 17 12 19 25 ), Swap since 19 > 12

( 18 17 12 19 25 ) –> ( 18 17 12 19 25 )

<u>Third Pass:</u>

( 18 17 12 19 25 ) –> ( 17 18 12 19 25 ), Swap since 18 > 17

( 17 18 12 19 25 ) –> ( 17 12 18 19 25 ), Swap since 18 > 12

( 17 12 18 19 25 ) –> ( 17 12 18 19 25 )

( 17 12 18 19 25 ) –> ( 17 12 18 19 25 )

<u>Fourth Pass:</u>

( 17 12 18 19 25 ) –> ( 12 17 18 19 25 ), Swap since 17 > 12

( 12 17 18 19 25 ) –> ( 12 17 18 19 25 ), Swap since 18 > 12

( 12 17 18 19 25 ) –> ( 12 17 18 19 25 )

( 12 17 18 19 25 ) –> ( 12 17 18 19 25 )

Now, the array is already sorted, but our algorithm does not know if it is completed. The algorithm needs one whole pass without any swap to know it is sorted.

<u>Fifth Pass:</u>

( 12 17 18 19 25 ) –> ( 12 17 18 19 25 )

( 12 17 18 19 25 ) –> ( 12 17 18 19 25 )

( 12 17 18 19 25 ) –> ( 12 17 18 19 25 )

( 12 17 18 19 25 ) –> ( 12 17 18 19 25 )

6 0
3 years ago
The absolute pressure in water at a depth of 9 m is read to be 185 kPa. Determine: a. The local atmospheric pressure b. The abso
ser-zykov [4K]

Answer:

a)Patm=135.95Kpa

b)Pabs=175.91Kpa

Explanation:

the absolute pressure is the sum of the water pressure plus the atmospheric pressure, which means that for point a we have the following equation

Pabs=Pw+Patm(1)

Where

Pabs=absolute pressure

Pw=Water pressure

Patm= atmospheric pressure

Water pressure is calculated with the following equation

Pw=γ.h(2)

where

γ=especific weight of water=9.81KN/M^3

H=depht

A)

Solving using ecuations 1 y 2

Patm=Pabs-Pw

Patm=185-9.81*5=135.95Kpa

B)

Solving using ecuations 1 y 2, and atmospheric pressure

Pabs=0.8x5x9.81+135.95=175.91Kpa

8 0
4 years ago
a centrifugal pump delivers water at the rate of 50kg/is . the inlet and outlet pressure are 2 bar and 6.2 bar respectively. the
Monica [59]

Answer:

21.6 kw

Explanation:

Given data:

m = 50 kg/s

Inlet pressure (p1) = 2 bar

outlet pressure(p2) = 6.2 bar

suction ( h1 ) = -2.2 m

delivery ( h2 ) = 8.5 m

d1 = 200 mm = 0.2 m

d2 = 100 mm = 0.1 m

Vs of water = 0.001 m^3/kg

next we have to determine the Q value

Q = V*A

Q = 0.001 * 50 = 0.05 m^3/s

next we have to calculate the various V's

V1 = Q/A1 = \frac{0.05*4}{\pi *0.2^2}  = 1.59 m/s

V2 = Q/A2 = \frac{0.05*4}{\pi *0.1^2} = 6.37 m/s

Determine the capacity of the electric motor

attached below is the detailed solution

7 0
3 years ago
Other questions:
  • Koch traded Machine 1 for Machine 2 when the fair market value of both machines was $60,000. Koch originally purchased Machine 1
    10·1 answer
  • One kilogram of water fills a 150-L rigid container at an initial pressure of 2 MPa. The container is then cooled to 40∘C. Deter
    7·1 answer
  • You are asked to design a software package for an On-line Banking System (OBS). The OBS will take requests from its user on the
    14·1 answer
  • 1. What's an object in your everyday life that has a lot of Kinetic Energy? How do you know it has a lot?
    5·1 answer
  • 2+2 = 900000000000000000000000000000000000
    7·1 answer
  • A glass plate is subjected to a tensile stress of 40 MPa. If the specific surface energy is 0.3 J/m2 and the modulus of elastici
    14·1 answer
  • Which of these drum brake systems uses servo action in both directions?
    9·1 answer
  • When designing a new product, which type of drawing is usually made FIRST?
    11·1 answer
  • Technician A says that a tie rod end is a ball and socket joint similar in construction to a ball joint. Technician B says that
    6·2 answers
  • Suppose we are given three boxes, Box A contains 20 light bulbs, of which 10 are defective, Box B contains 15 light bulbs, of wh
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!