Answer:
Explanation:
Obtain the following properties at 6MPa and 600°C from the table "Superheated water".

Obtain the following properties at 10kPa from the table "saturated water"

Calculate the enthalpy at exit of the turbine using the energy balance equation.

Since, the process is isentropic process 

Use the isentropic relations:

Calculate the enthalpy at isentropic state 2s.

a.)
Calculate the isentropic turbine efficiency.

b.)
Find the quality of the water at state 2
since
at 10KPa <
<
at 10KPa
Therefore, state 2 is in two-phase region.

Calculate the entropy at state 2.

Calculate the rate of entropy production.

since, Q = 0

Answer:
the surface heat-transfer coefficient due to natural convection during the initial cooling period. = 4.93 w/m²k
Explanation:
check attachement for answer explanation
Answer:
Some general principles are given below in the explanation segment.
Explanation:
Sewage treatment seems to be a method to extract pollutants from untreated sewage, consisting primarily of domestic sewage including some solid wastes.
<u>The principles are given below:</u>
- Unless the components throughout the flow stream become greater than the ports or even the gaps throughout the filter layer, those holes would be filled as either a result of economic detection.
- The much more common element of filtration would be the use of gravity to extract a combination.
- Broadcast interception or interference.
- Inertial influence.
- Sieving seems to be an excellent method to distinguish particulates.
Answer:
The tube surface temperature immediately after installation is 120.4°C and after prolonged service is 110.8°C
Explanation:
The properties of water at 100°C and 1 atm are:
pL = 957.9 kg/m³
pV = 0.596 kg/m³
ΔHL = 2257 kJ/kg
CpL = 4.217 kJ/kg K
uL = 279x10⁻⁶Ns/m²
KL = 0.68 W/m K
σ = 58.9x10³N/m
When the water boils on the surface its heat flux is:

For copper-water, the properties are:
Cfg = 0.0128
The heat flux is:
qn = 0.9 * 18703.42 = 16833.078 W/m²

The tube surface temperature immediately after installation is:
Tinst = 100 + 20.4 = 120.4°C
For rough surfaces, Cfg = 0.0068. Using the same equation:
ΔT = 10.8°C
The tube surface temperature after prolonged service is:
Tprolo = 100 + 10.8 = 110.8°C
Answer:
modulus of elasticity for the nonporous material is 340.74 GPa
Explanation:
given data
porosity = 303 GPa
modulus of elasticity = 6.0
solution
we get here modulus of elasticity for the nonporous material Eo that is
E = Eo (1 - 1.9P + 0.9P²) ...............1
put here value and we get Eo
303 = Eo ( 1 - 1.9(0.06) + 0.9(0.06)² )
solve it we get
Eo = 340.74 GPa