1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alisiya [41]
4 years ago
11

A. Find the critical point of the given function and then determine whether it is a local maximum, local minimum, or saddle poin

t.
f(x, y) = x2 − y2 + 3xy

b. Find the critical point of the given function and then determine whether it is a local maximum, local minimum, or saddle point.

f(x, y) = x2 + y2 − xy
Mathematics
1 answer:
tresset_1 [31]4 years ago
5 0

Answer:

Step-by-step explanation:

a) f(x,y) =  x² - y² + 3xy

First derivative x (variable)                          First derivative y (variable)

f´(x)  = 2x  + 3y                                                      f´(y)  = - 2y + 3x

Second derivative x (variable)                   Second derivative y (variable)

f´´(xx) = 2                                                               f´´ (yy) = -2

Cross derivative                                              Cross  derivative

f´´(x,y )  =   3                                                         f´´(y,x)  =  3

f´(x) = 0                                  and                     f´(y)  =  0

2x  + 3y  = 0                                                    - 2y + 3x  = 0

We got a two equation system with two uknown variables

2x  + 3y  = 0             - 2y + 3x  = 0

Solving

x  =  3/2 * y                 -2y  +  3* (3/2) *y =0

-2y  +  9/2 y  = 0           y  = 0     and    x  =  0  

Critical point  P ( 0 ,0 )

we must evaluate

f´´(x,x)  = 2

f´´(y,y)  = -2

f´´ (x,y)   = f´´(y,x) = 3

We compute discriminiting

D = f´´(x,x) * f´´(y,y) - [f´´(x,y)]²         D = (2)*(-2)  - (3)²     D = -4 -9

D  = -13

Then we got one second derivative positive the other negative and D < 0

we have a saddle point

b)  f(x,y)  =  x²   + y²  - xy

folowing the same procedure

f¨(x)    =  2x -y                                          f´(y)     = 2y - x

f´´ (x,x) = 2                                                 f´´(y,y) = 2

Croos derivative

f´´(x,y) = -1                                             f´´(y,x)  =   -1

Equation system:    

2x -y   = 0                  y  = 2x

2y - x   = 0            2(2x)  - x  = 0        4x  - x  = 0      x = 0  and y = 0

Critical point  P ( 0 , 0 )

f´´(x,x)  =  2

f´´(y,y)  =  2

f´´ (x,y) = f´´(y,x)  = -1

D = (2)*2  - (-1)     =  4 - 1 = 3

D = 3

The fuction has a minimum the point P ( 0 , 0) is a minimum

You might be interested in
The product of x and 8 is not less than 16
Marrrta [24]

Answer:

x ≥ 2

Step-by-step explanation:

The inequality would be: <em>x * 8 ≥ 16</em>

8x ≥ 16

x ≥ 16/8

<u>x ≥ 2</u>

Hope this helps!

5 0
3 years ago
Read 2 more answers
There is a traffic light at the intersection of pine street and spruce avenue the traffic light on pine street follows a cycle i
murzikaleks [220]
10/60= 1/6  
p(event)= # of ways an event can occur/sample space zice(the number of possible outcomes)  
6 0
3 years ago
Read 2 more answers
What numbers are mulitply and equals negative 30 and when add equals to negative 25
timofeeve [1]
This is impossible without getting a never ending decimal somewhere between 1.14 and 1.15.
3 0
4 years ago
Help with this please.
Ivanshal [37]

Answer:

  • True
  • True

Step-by-step explanation:

This question asks you to compare the coordinates of the vertex of each function.

__

The vertex of the function is its minimum, the point where the graph stops decreasing and starts increasing. It is the lowest point on the graph.

<h3>f(x)</h3>

The vertex is (-4, -1). The minimum is -1, located at x = -4.

<h3>g(x)</h3>

The vertex is (1, -25). The minimum is -25, located at x = 1. We know this is the minimum because there are no g(x) values that are lower (more negative).

<h3>comparison</h3>

The minimum of f(x), -1, is greater than the minimum of g(x), -25. TRUE

The x-value of f(x) at its minimum, -4, is less than the x-value of g(x) at its minimum, 1. TRUE

8 0
2 years ago
A triangle has side lengths of 9 in, 13 in, and 20 in. What is the measurement of this triangle’s largest angle?
zvonat [6]
1. Given any triangle ABC with sides BC=a, AC=b and AB=c, the following are true :

      i) the larger the angle, the larger the side in front of it, and the other way around as well. (Sine Law) Let a=20 in, then the largest angle is angle A.

       ii) Given the measures of the sides of a triangle. Then the cosines of any of the angles can be found by the following formula:

       a^{2}=b ^{2}+c ^{2}-2bc(cosA)

2. 

20^{2}=9 ^{2}+13 ^{2}-2*9*13(cosA)&#10;&#10;400=81+169-234(cosA)   150=-234(cosA)&#10;&#10;cosA=150/-234= -0.641

3. m(A) = Arccos(-0.641)≈130°, 

4. Remark: We calculate Arccos with a scientific calculator or computer software unless it is one of the well known values, ex Arccos(0.5)=60°, Arccos(-0.5)=120° etc
4 0
4 years ago
Read 2 more answers
Other questions:
  • What interger is equivalent to 25 3/2
    12·2 answers
  • Seven times the sum of 4 and a number is 1
    6·1 answer
  • How to do 2x+y=7 and plz show how you got it
    14·1 answer
  • you have 160 yards of fencing to enclose a rectangular region. find the maximum area of the rectangular region
    10·2 answers
  • Add.<br><br><br><br> Express your answer in simplest form<br><br><br> 7+1 7/4<br><br> 10+4 1/4
    8·1 answer
  • The deer population of a certain area is modeled by the formula: P=578e^0.045t where t is measured in years. In approximately ho
    8·1 answer
  • Ashelie is buying fruits at a store. She buys b bananas at $0.99 each and a apples at $0.58 each. What does the expression 0.99b
    5·1 answer
  • Write the equation of the line that passes through the points (0, -5) and (2, -1).
    11·1 answer
  • Which of these numbers are the largest 4.12 or 4.21​
    13·1 answer
  • Find 0.35 percent of 80
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!