Microscope technology gives us access to some pretty important/powerful information, however some limitations to it include: resolution limit, low magnification, & poor surface view,
How do the genes in our DNA influence our characteristics? For example, how can a gene determine
whether a person is an albino with very pale skin and hair?
Basically, a gene is a segment of DNA that provides the instructions for making a protein, and
proteins influence our characteristics. This chart describes how two different versions of a gene result
in two different versions of a protein which in turn can result in either normal skin and hair color or
albinism.
DNA Protein Characteristic
Version of the gene that provides
instructions to make
normal protein enzyme
Normal enzyme that makes the
pigment molecule in skin and
hair
Normal skin and hair
color
Version of the gene that provides
instructions to make
defective enzyme
Defective enzyme that does
not make this pigment
molecule
Albinism (very pale
skin and hair)
A gene directs the synthesis of a protein by a two-step process.
The first step is transcription of the gene in the DNA.
Transcription produces a messenger RNA (mRNA) molecule.
The second step is translation of the mRNA molecule.
Translation produces a protein molecule.
During transcription, the sequence of
nucleotides in a gene in the DNA is
copied to a corresponding sequence
of nucleotides in mRNA.
During translation, the sequence of
nucleotides in the mRNA determines
the sequence of amino acids in the
protein.
After translation, the sequence of amino acids in the protein determines the structure and function of
the protein. Differences in protein function can influence characteristics such as normal skin and hair
color vs. albinism.
Answer: soft seeds
Explanation:
Tiny, soft seeds that are easy to crush are preferred by the medium ground finch to feed. During droughts, however, they often consume the larger seeds on the island when small seeds are not as available.
Answer: In this process, the energy released in form of ATP (Adenosine triphosphate) is used to POWER BIOCHEMICAL PROCESSES.
Explanation:
Aerobic respiration is the process by which living organisms breaks down glucose molecule to release energy. Oxygen is used for this process that's why the name aerobic.
Aerobic respiration releases energy within the bonds of glucose step by step in an enzyme controlled reaction. The stages of these processes includes:
--> Glycolysis: In this stage, glucose molecules are split to produce two molecules of ATP and two molecules of NADH (another energy carrying molecule).
--> Krebs Cycle: this is the second stage which occurs in the mitochondria of cells. The 2 ATP molecules generated from glycolysis is used to produce two more ATP, 8 more NADH and 2 molecules of FADH. This makes it a total of 16 energy molecules ( including 2 molecules of ATP from glycolysis).
--> Electron transport chain: this is the last stage of aerobic respiration which takes part at the inner member of the mitochondria. Electrons are transported from molecule to molecule down an electron-transport chain. Some of the energy from the electrons ( NADH and FADH from kreb cycle) is used to pump hydrogen ions across the membrane, creating an electrochemical gradient that drives the synthesis of many more molecules of ATP. As a result 32 more ATP are generated.
In conclusion, a total of up to 36 molecules of ATP from just one molecule of glucose in the process of aerobic respiration which are used to power biological processes.
Answer:
Conduction can only occur between two objects when -
one object is less dense than the other. both objects are in physical contact with each other.