That's "<em><u>insolation</u></em>" ... not "insulation".
'Insolation' is simply the intensity of solar radiation over some area.
If 200 kW of radiation is shining on 300 m² of area, then the insolation is
(200 kW) / (300 m²) = <em>(666 and 2/3) watt/m²</em> .
Note that this is the intensity of the <em><u>incident</u></em> radiation. It doesn't say anything
about how much soaks in or how much bounces off.
Wait !
I just looked back at the choices, and realized that I didn't answer the question
at all. I have no idea what "1 sun" means. Forgive me. I have stolen your
points, and I am filled with remorse.
Wait again !
I found it, through literally several seconds of online research.
1 sun = 1 kW/m².
So 2/3 of a kW per m² = 2/3 of 1 sun
That's between 0.5 sun and 1.0 sun.
I feel better now, and plus, I learned something.
Here you go it was too long to type
Answer:
Explanation:
Increases. The force of gravity is distance dependent. Therefore, a smaller 'r' value will result in a larger force. Net force is proportional to the acceleration, so the planet will increase its speed.
Answer:
v_f = 10.85 m/s
Explanation:
We will apply the law of conservation of momentum here:

where,
m₁ = mass of roller skater = 47 kg
m₂ = mass of bag = 6 kg
v_1i = initial speed of roller skater = 12 m/s
v_2i = initial speed of the bag = 0 m/s
v_1f = final speed of the roller skater = ?
v_2f = final speed of the bag = ?
Both the bag and the skater will have same speed at the end because kater is carrying the bag:
v_1f = v_2f = v_f
Therefore, the equation will become:

<u>v_f = 10.85 m/s</u>