Continuing from the setup in the question linked above (and using the same symbols/variables), we have




The next part of the question asks to maximize this result - our target function which we'll call

- subject to

.
We can see that

is quadratic in

, so let's complete the square.

Since

are non-negative, it stands to reason that the total product will be maximized if

vanishes because

is a parabola with its vertex (a maximum) at (5, 25). Setting

, it's clear that the maximum of

will then be attained when

are largest, so the largest flux will be attained at

, which gives a flux of 10,800.
Yz= bc - wx
==> z= (bc -wx) / y
Answer:
y = 4x - 1
Step-by-step explanation:
Answer:
Hypothenus = 22
Step-by-step explanation:
From the question given above, we were told that the triangles are congruent (i.e same size). Thus,
AC = EF
BC = DE
To obtain the length of each Hypothenus, we shall determine the value of y and x. This can be obtained as follow:
For y:
AC = y + 3
EF = 2y + 1
AC = EF
y + 3 = 2y + 1
Collect like terms
3 – 1 = 2y – y
2 = y
y = 2
For x:
BC = 5x + 7
DE = 6x + 2y
y = 2
DE = 6x + 2(2)
DE = 6x + 4
BC = DE
5x + 7 = 6x + 4
Collect like terms
7 – 4 = 6x – 5x
3 = x
x = 3
Finally, we shall determine the length of each Hypothenus. This can be obtained as follow:
Hypothenus = BC
Hypothenus = 5x + 7
x = 3
Hypothenus = 5x + 7
Hypothenus = 5(3) + 7
Hypothenus = 15 + 7
Hypothenus = 22
OR
Hypothenus = DE
DE = 6x + 2y
y = 2
x = 3
Hypothenus = 6(3) + 2(2)
Hypothenus = 18 + 4
Hypothenus = 22
Answer:
Exponential growth refers to an increase based on a constant multiplicative rate of change over equal increments of time,that is a percent increase of the original amount over time.