Answer:
Equation of parabola is : y = 121 - 
Let Rectangle whose base lie on X axis have coordinates be A(a,0) and B(-a,0).
Two of vertices of rectangle lies on parabola.
If you will draw perpendicular from A(a,0) and B(-a,0) i.e on it's opposite side it's coordinate will be (a, -121 +
) and (-a,
- 121)
As,
lies on parabola : y = 121 -
.
Length = 2 a, Breadth = 121 - a²
So,A= Area of Rectangle = Length × Breadth
= 2 a × (121- a²)
→A = 2 [ -a³ + 121 a]
For maxima or minima , we need to differentiate area.
A' = 2 [-3 a² + 121 ], where A = dA / da
A'= 0
2 [ - 3 a² + 121] = 0
- 3 a² + 121=0
3 a² = 121
a² = 
a = 
Length = 2 a = ![\frac{22\sqrt3}{3}\text{ and Breadth} = 121 - [\frac{11\sqrt3}{3}]^2=\frac{726}{9}](https://tex.z-dn.net/?f=%5Cfrac%7B22%5Csqrt3%7D%7B3%7D%5Ctext%7B%20and%20Breadth%7D%20%3D%20121%20-%20%5B%5Cfrac%7B11%5Csqrt3%7D%7B3%7D%5D%5E2%3D%5Cfrac%7B726%7D%7B9%7D)
A" = 2 [ -6 a ], where A" = d A²/ d a²
A" = - 12 a, which is negative, gives Maximum area.