Answer:
Okay So I see you need to change 1/3 to a denominator of 6
You don't do anything to the -1/6
But to change the 1/3 you need to multiply 3 and 1 by two, which is 2/6
And the -1/6 stays the same
Given that the population can be modeled by P=22000+125t, to get the number of years after which the population will be 26000, we proceed as follows:
P=26000
substituting this in the model we get:
26000=22000+125t
solving for t we get:
t=4000/125
t=32
therefore t=32 years
This means it will take 32 years for the population to be 32 years. Thus the year in the year 2032
Answer:
The Answer is D
Step-by-step explanation:
Let the two numbers be represented by x and y. The problem statement gives rise to two sets of equations.
x - y = 0.6
y/x = 0.6 . . . . . . . assuming x is the larger of the two numbers
or
x/y = 0.6 . . . . . . . assuming y has the larger magnitude
The solution of the first pair of equations is
(x, y) = (1.5, 0.9)
The solution of the first and last equations is
(x, y) = (-0.9, -1.5)
The pairs of numbers could be {0.9, 1.5} or {-1.5, -0.9}.