Since it's a one-variable equation, it has only one solution:
25 - 4x = 15 - 3x + 10 - x
25 - 4x + x = 15 - 3x + 10
25 - 3x = 15 - 3x + 10
- 3x = 15 - 3x + 10 - 25
- 3x = 15 - 3x - 15
- 3x + 3x = 15 - 15
0 = 15 - 15
0 = 0
Hope it helped,
BioTeacher101
Answer:
Slope: −1
y-intercept: (0,3)
Step-by-step explanation:
Answer:
t-shirts: 2790
profit: $12209
Step-by-step explanation:
Given the function:
p(x) = -x³ + 4x² + x
we want to maximize it.
The following criteria must be satisfied at the maximum:
dp/dx = 0
d²p/dx² < 0
dp/dx = -3x² + 8x + 1 = 0
Using quadratic formula:
![x = \frac{-b \pm \sqrt{b^2 -4(a)(c)}}{2(a)}](https://tex.z-dn.net/?f=x%20%3D%20%5Cfrac%7B-b%20%5Cpm%20%5Csqrt%7Bb%5E2%20-4%28a%29%28c%29%7D%7D%7B2%28a%29%7D%20)
![x = \frac{-8 \pm \sqrt{8^2 -4(-3)(1)}}{2(-3)}](https://tex.z-dn.net/?f=x%20%3D%20%5Cfrac%7B-8%20%5Cpm%20%5Csqrt%7B8%5E2%20-4%28-3%29%281%29%7D%7D%7B2%28-3%29%7D%20)
![x = \frac{-8 \pm 8.72}{-6}](https://tex.z-dn.net/?f=x%20%3D%20%5Cfrac%7B-8%20%5Cpm%208.72%7D%7B-6%7D%20)
![x_1 = \frac{-8 + 8.72}{-6}](https://tex.z-dn.net/?f=x_1%20%3D%20%5Cfrac%7B-8%20%2B%208.72%7D%7B-6%7D%20)
![x_1 = -0.12](https://tex.z-dn.net/?f=x_1%20%3D%20-0.12)
![x_2 = \frac{-8 - 8.72}{-6}](https://tex.z-dn.net/?f=x_2%20%3D%20%5Cfrac%7B-8%20-%208.72%7D%7B-6%7D%20)
![x_2 = 2.79](https://tex.z-dn.net/?f=x_2%20%3D%202.79%20)
d²p/dx² = -6x + 8
d²p/dx² at x = -0.12: -6(-0.12) + 8 = 8.72 > 0
d²p/dx² at x = 2.79: -6(2.79) + 8 = -8.74 < 0
Then, he should prints 2.79 thousands, that is, 2790 t-shirts to make maximum profits.
Replacing into profit equation:
p(x) = -(2.79)³ + 4(2.79)² + 2.79 = 12.209
that is, $12209
Answer: c
Step-by-step explanation:
if the output is 4, a has to be somewhere at y=4
{-4.5,-2,1} are all possible
so c, {-2,1}
(x+5)(x-5)
= x^2 - 5x + 5x - 25
= x^2 - 25
(5x+3)(5x-3)
= 25x^2 - 15x + 15x - 9
= 25x^2 - 9
do you see the pattern? both the coefficient on x and constant multiply together to make a perfect square and the middle term, also known as "b" term cancels out leaving a binomial