Answer:
savage love
Step-by-step explanation:
Answer:
I am sorry but this is too difficult
Step-by-step explanation:
I recommend asking a teacher for help not to be rude
Answer:
no I can't
Step-by-step explanation:
im a dum dum, sorry.
I assume
has counterclockwise orientation when viewed from above.
By Stokes' theorem,
![\displaystyle\int_C\vec F\cdot\mathrm d\vec r=\iint_S(\nabla\times\vec F)\cdot\mathrm d\vec S](https://tex.z-dn.net/?f=%5Cdisplaystyle%5Cint_C%5Cvec%20F%5Ccdot%5Cmathrm%20d%5Cvec%20r%3D%5Ciint_S%28%5Cnabla%5Ctimes%5Cvec%20F%29%5Ccdot%5Cmathrm%20d%5Cvec%20S)
so we first compute the curl:
![\vec F(x,y,z)=xy\,\vec\imath+yz\,\vec\jmath+xz\,\vec k](https://tex.z-dn.net/?f=%5Cvec%20F%28x%2Cy%2Cz%29%3Dxy%5C%2C%5Cvec%5Cimath%2Byz%5C%2C%5Cvec%5Cjmath%2Bxz%5C%2C%5Cvec%20k)
![\implies\nabla\times\vec F(x,y,z)=-y\,\vec\imath-z\,\vec\jmath-x\,\vec k](https://tex.z-dn.net/?f=%5Cimplies%5Cnabla%5Ctimes%5Cvec%20F%28x%2Cy%2Cz%29%3D-y%5C%2C%5Cvec%5Cimath-z%5C%2C%5Cvec%5Cjmath-x%5C%2C%5Cvec%20k)
Then parameterize
by
![\vec r(u,v)=\cos u\sin v\,\vec\imath+\sin u\sin v\,\vec\jmath+\cos^2v\,\vec k](https://tex.z-dn.net/?f=%5Cvec%20r%28u%2Cv%29%3D%5Ccos%20u%5Csin%20v%5C%2C%5Cvec%5Cimath%2B%5Csin%20u%5Csin%20v%5C%2C%5Cvec%5Cjmath%2B%5Ccos%5E2v%5C%2C%5Cvec%20k)
where the
-component is obtained from
![1-(\cos u\sin v)^2-(\sin u\sin v)^2=1-\sin^2v=\cos^2v](https://tex.z-dn.net/?f=1-%28%5Ccos%20u%5Csin%20v%29%5E2-%28%5Csin%20u%5Csin%20v%29%5E2%3D1-%5Csin%5E2v%3D%5Ccos%5E2v)
with
and
.
Take the normal vector to
to be
![\vec r_v\times\vec r_u=2\cos u\cos v\sin^2v\,\vec\imath+\sin u\sin v\sin(2v)\,\vec\jmath+\cos v\sin v\,\vec k](https://tex.z-dn.net/?f=%5Cvec%20r_v%5Ctimes%5Cvec%20r_u%3D2%5Ccos%20u%5Ccos%20v%5Csin%5E2v%5C%2C%5Cvec%5Cimath%2B%5Csin%20u%5Csin%20v%5Csin%282v%29%5C%2C%5Cvec%5Cjmath%2B%5Ccos%20v%5Csin%20v%5C%2C%5Cvec%20k)
Then the line integral is equal in value to the surface integral,
![\displaystyle\iint_S(\nabla\times\vec F)\cdot\mathrm d\vec S](https://tex.z-dn.net/?f=%5Cdisplaystyle%5Ciint_S%28%5Cnabla%5Ctimes%5Cvec%20F%29%5Ccdot%5Cmathrm%20d%5Cvec%20S)
![=\displaystyle\int_0^{\pi/2}\int_0^{\pi/2}(-\sin u\sin v\,\vec\imath-\cos^2v\,\vec\jmath-\cos u\sin v\,\vec k)\cdot(\vec r_v\times\vec r_u)\,\mathrm du\,\mathrm dv](https://tex.z-dn.net/?f=%3D%5Cdisplaystyle%5Cint_0%5E%7B%5Cpi%2F2%7D%5Cint_0%5E%7B%5Cpi%2F2%7D%28-%5Csin%20u%5Csin%20v%5C%2C%5Cvec%5Cimath-%5Ccos%5E2v%5C%2C%5Cvec%5Cjmath-%5Ccos%20u%5Csin%20v%5C%2C%5Cvec%20k%29%5Ccdot%28%5Cvec%20r_v%5Ctimes%5Cvec%20r_u%29%5C%2C%5Cmathrm%20du%5C%2C%5Cmathrm%20dv)
![=\displaystyle-\int_0^{\pi/2}\int_0^{\pi/2}\cos v\sin^2v(\cos u+2\cos^2v\sin u+\sin(2u)\sin v)\,\mathrm du\,\mathrm dv=\boxed{-\frac{17}{20}}](https://tex.z-dn.net/?f=%3D%5Cdisplaystyle-%5Cint_0%5E%7B%5Cpi%2F2%7D%5Cint_0%5E%7B%5Cpi%2F2%7D%5Ccos%20v%5Csin%5E2v%28%5Ccos%20u%2B2%5Ccos%5E2v%5Csin%20u%2B%5Csin%282u%29%5Csin%20v%29%5C%2C%5Cmathrm%20du%5C%2C%5Cmathrm%20dv%3D%5Cboxed%7B-%5Cfrac%7B17%7D%7B20%7D%7D)
Q = p(r + s)
Use the distributive property
Q = pr + ps
Q = p x r + p x s
Q = p x p + r x s
Q = p^2 + rs
Subtract rs from both sides
Q - rs = p^2
Square root both sides
sqrt Q - rs = p