Answer:
dont click that link report it
Step-by-step explanation:
The answers are: D and C and A and E
because:
B 3(x - 5) - 2(6x2 + 9x + 5)=<span><span><span>−<span>12<span>x^2</span></span></span>−<span>15x</span></span>−<span>25
</span></span>F (4x2 - 13x - 7) - (16x2 + 9x - 5)=<span><span>−<span>12<span>x2</span></span></span>−<span>22x</span></span>−<span>2
E </span>(-15x2 + 9x - 10) + (3x2 - 10x - 5)=<span><span>−<span>12<span>x^2</span></span></span>−x</span>−<span>15</span>
can you send me the actual problem so that i can solve it
Answer:
D. No, there isn’t enough information because only two pairs of corresponding sides can't be used to prove that two triangles are congruent.
<h3>
Answer: Choice B ![\frac{\sqrt{15}}{4}](https://tex.z-dn.net/?f=%5Cfrac%7B%5Csqrt%7B15%7D%7D%7B4%7D)
</h3>
===========================================================
Work Shown:
Angle theta is between 0 and pi/2, so this angle is in quadrant Q1.
Square both sides of the given equation
![\sin \theta = \frac{1}{4}\\\\\sin^2 \theta = \left(\frac{1}{4}\right)^2\\\\\sin^2 \theta = \frac{1}{16}](https://tex.z-dn.net/?f=%5Csin%20%5Ctheta%20%3D%20%5Cfrac%7B1%7D%7B4%7D%5C%5C%5C%5C%5Csin%5E2%20%5Ctheta%20%3D%20%5Cleft%28%5Cfrac%7B1%7D%7B4%7D%5Cright%29%5E2%5C%5C%5C%5C%5Csin%5E2%20%5Ctheta%20%3D%20%5Cfrac%7B1%7D%7B16%7D)
Then use the pythagorean trig identity to get
![\sin^2 \theta + \cos^2 \theta = 1\\\\\cos^2 \theta = 1-\sin^2 \theta\\\\\cos \theta = \sqrt{1-\sin^2 \theta} \ \ \ \text{cosine is positive in Q1}\\\\\cos \theta = \sqrt{1-\frac{1}{16}}\\\\\cos \theta = \sqrt{\frac{16}{16}-\frac{1}{16}}\\\\\cos \theta = \sqrt{\frac{16-1}{16}}\\\\\cos \theta = \sqrt{\frac{15}{16}}\\\\\cos \theta = \frac{\sqrt{15}}{\sqrt{16}}\\\\\cos \theta = \frac{\sqrt{15}}{4}\\\\](https://tex.z-dn.net/?f=%5Csin%5E2%20%5Ctheta%20%2B%20%5Ccos%5E2%20%5Ctheta%20%3D%201%5C%5C%5C%5C%5Ccos%5E2%20%5Ctheta%20%3D%201-%5Csin%5E2%20%5Ctheta%5C%5C%5C%5C%5Ccos%20%5Ctheta%20%3D%20%5Csqrt%7B1-%5Csin%5E2%20%5Ctheta%7D%20%5C%20%5C%20%5C%20%5Ctext%7Bcosine%20is%20positive%20in%20Q1%7D%5C%5C%5C%5C%5Ccos%20%5Ctheta%20%3D%20%5Csqrt%7B1-%5Cfrac%7B1%7D%7B16%7D%7D%5C%5C%5C%5C%5Ccos%20%5Ctheta%20%3D%20%5Csqrt%7B%5Cfrac%7B16%7D%7B16%7D-%5Cfrac%7B1%7D%7B16%7D%7D%5C%5C%5C%5C%5Ccos%20%5Ctheta%20%3D%20%5Csqrt%7B%5Cfrac%7B16-1%7D%7B16%7D%7D%5C%5C%5C%5C%5Ccos%20%5Ctheta%20%3D%20%5Csqrt%7B%5Cfrac%7B15%7D%7B16%7D%7D%5C%5C%5C%5C%5Ccos%20%5Ctheta%20%3D%20%5Cfrac%7B%5Csqrt%7B15%7D%7D%7B%5Csqrt%7B16%7D%7D%5C%5C%5C%5C%5Ccos%20%5Ctheta%20%3D%20%5Cfrac%7B%5Csqrt%7B15%7D%7D%7B4%7D%5C%5C%5C%5C)