Answer:
<h2>absolute maximum = 16</h2><h2>absolute minimum = 1</h2>
Step-by-step explanation:
To get the absolute maximum and minimum values of the function f(x) = 16 + 2x − x² n the given interval [0,5], we need to get the values of f(x) at the end points. The end points are 0 and 5.
at x = 0;
f(0) = 16 + 2(0) − 0²
f(0) = 16
at the other end point i.e at x = 5;
f(5) = 16 + 2(5) − 5²
f(5) = 16 + 10-25
f(5)= 26-25
f(5) = 1
The absolute minimum value is 1 and occurs at x = 5
The absolute maximum value is 16 and occurs at x = 0
Step-by-step explanation:
you can open the file I gave you now. the answer is there
First thing you should do is reduce coefficients.
1st equation has all multiples of '2'. Divide by 2
---> x +3y = -6
2nd equation has multiples of 5. Divide by 5.
---> x - y = 2
Now elimination part is easier.
Eliminate 'x' variable by subtracting 2nd equation from 1st.
x + 3y = -6
-(x - y = 2)
----------------------
4y = -8
Solve for 'y'
4y = -8
y = (-8)/4 = -2
Substitute value for 'y' back into 2nd equation:
x - (-2) = 2
x + 2 = 2
x = 0
Solution to system is:
x=0, y =-2
To solve for x
bx=-7
divide b on both sides
x=-7/b
to solve for b
bx=-7
divide x on both sides
b=-7/x
X= -1
3 That is the answer if you need help with algebra I suggest math papa calculator