R = -2 :) hope this helps
A.) Since there are no restrictions as to the dimensions of the candle except that their volumes must equal 1 cubic foot and that each must be a cylinder, we have the freedom to decide the candles' dimensions.
I decided to have the candles equal in volume. So, 1 cubic foot divided by 8 gives us 0.125 cubic foot, 216 in cubic inches.
With each candle having a volume of 216 cubic inches, I assign a radius to each: 0.5 in, 1.0 in, 1.5 in, 2.0 in, 2.5 in, 3.0 in, 3.5 in, and 4.0 in. Then, using the formula of the volume of a cylinder, which is:
V=pi(r^2)(h)
we then solve the corresponding height per candle. Let us let the value of pi be 3.14.
Hence, we will have the following heights (expressed to the nearest hundredths) for each of the radius: for
r=2.5 in: h=11.01 in
r=3.0 in: h= 7.64 in
r=3.5 in: h= 5.62 in
r=4.0 in: h= 4.30 in
r=4.5 in: h= 3.40 in
r=5.0 in: h= 2.75 in
r=5.5 in: h= 2.27 in
r=6.0 in: h= 1.91 in
b. each candle should sell for $15.00 each
($20+$100)/8=$15.00
c. yes, because the candles are priced according to the volume of wax used to make them, which in this case, is just the same for all sizes
Here's a pattern to consider:
1+100=101
2+99=101
3+98=101
4+97=101
5+96=101
.....
This question relates to the discovery of Gauss, a mathematician. He found out that if you split 100 from 1-50 and 51-100, you could add them from each end to get a sum of 101. As there are 50 sets of addition, then the total is 50×101=5050
So, the sum of the first 100 positive integers is 5050.
Quick note
We can use a formula to find out the sum of an arithmetic series:

Where s is the sum of the series and n is the number of terms in the series. It works for the above problem.
9x squared - 6x - 6x + 4
9x squared - 12x + 4