Is the letter D because your having half of their DNA. That's why your mother is contributing the Y chromosome and your father is contributing the X chromosome
Answer: Yes. Splicing can be done in different ways to yield different mRNAs wich will create different proteins. Prokaryotes are not able to do this.
Explanation:
DNA (deoxyribonucleic acid) is a molecule that contains the genetic information for synthesizing amino acids that form proteins. To do this, DNA must first be transcribed into RNA (ribonucleic acid) and this is the molecule used for protein synthesis (translation). The newly transcribed RNA (called primary messenger RNA) from DNA results in a very long molecule and also has regions that do not code for anything, called introns, which are removed by a process called splicing. Exons are segments in the RNA that do code for amino acids and remain in the mature mRNA after splicing.
<u>Splicing is a process by which introns are cleaved from the primary messenger RNA and exons are joined to generate mature messenger RNA.</u> In addition, alternative splicing occurs which allows different mRNA isoforms and thus different proteins to be obtained from a primary mRNA transcript. This is because the exons will be joined or spliced in different ways, giving rise to different mature messenger RNA sequences. This process occurs mainly in eukaryotes, although it can also be observed in viruses. But it does not take place in Prokaryotes (Bacteria).
In summary, exons/introns can be spliced together in different ways to yield different mRNAs sequences. Each different mRNA sequence will code for a different protein.
The true statements are:
- Substrate level phosphorylation ocvurs during Pyruvate oxidation
- 32 ATP molecules can be made by cellular respiration but only 2 ATP molecules when oxygen is lacking
- Electrons move from protein to protein due to increasing electronegativity in the electron transport chain
- ADP is phosphorylated in the matrix of the mitochondria during oxidative phosphorylation
- ATP inhibits pyruvate dehydrogenase by feedback inhibition
<h3>What is glucose oxidation?</h3>
Glucose oxidation refers to the process in the cells in which glucose molecules are oxidized to form ATP and carbon dioxide in the presence of oxygen.
The first stage of glucose oxidation is the conversion to pyruvate.
Pyruvate is oxidized to acetylCoA.
AcetylCoA enters the citric acid cycle to produce reducing equivalents, NADH for the electron transport chain.
- The true statements about pyruvate oxidation is that there is substrate level phosphorylation during the process
- When there is sufficient oxygen, 36 ATP molecules can be made (theoretically) by cellular respiration. However, when oxygen is lacking, only 2 ATP molecules are made.
- In the electron transport chain of cellular respiration, electrons move from protein to protein due to increasing electronegativity
- During oxidative phosphorylation, ADP is phosphorylated in the matrix of the mitochondria
- Aerobic respiration can be regulated by feedback inhibition of pyruvate dehydrogenase by ATP.
Learn more about pyruvate oxidation at: brainly.com/question/22565849
#SPJ1
Answer:
Explanation:Compounds which have carbon and hydrogen atoms in their structure or formula are known as organic compounds. For example, a molecule of is organic because it has carbon and hydrogen atom in its formula. ... Thus, we can conclude that an organic molecule will always contain carbon and hydrogen