Answer:
23,700
Step-by-step explanation:
(-237) X (-99) = 23,463 + 237 = 23,700
-9 is x
mark me brainliest if the answer is correct, thank you in advance :)
To solve this problem you must apply the proccedure shown below:
1. You must make a system of equations, as below:
2. Let's call:
x: the number of first class tickets bought.
y: the number of coach tickets bought.
3. Then, you have:
x+y=7 (First equation)
970x+370y=3790 (Second equation)
x=7-y
4. By substitution, you have:
970x+370y=3790
970(7-y)+370=3790
y=5
x=7-y
x=7-5
x=2
Therefore, the answer is:
- Number of first class tickets bought=2
- Number of coach tickets bought=5
Answer:
The expected payment by the customer at the checkout is $9.
Step-by-step explanation:
The amount of the product is given as
![f(x)=\left \{ {{\frac{50}{x^3} \,\,\,\,\, x\geq 5 } \atop {0}} \right.](https://tex.z-dn.net/?f=f%28x%29%3D%5Cleft%20%5C%7B%20%7B%7B%5Cfrac%7B50%7D%7Bx%5E3%7D%20%20%20%20%20%20%20%5C%2C%5C%2C%5C%2C%5C%2C%5C%2C%20x%5Cgeq%205%20%7D%20%5Catop%20%7B0%7D%7D%20%5Cright.)
Now the expected payment is given as
![EP=\int\limits^{10}_{5} {x f(x)} \, dx +\int\limits^{\infty}_{10} {0.8x f(x)} \, dx](https://tex.z-dn.net/?f=EP%3D%5Cint%5Climits%5E%7B10%7D_%7B5%7D%20%7Bx%20f%28x%29%7D%20%5C%2C%20dx%20%2B%5Cint%5Climits%5E%7B%5Cinfty%7D_%7B10%7D%20%7B0.8x%20f%28x%29%7D%20%5C%2C%20dx)
Here 0.8 x is used in the second integral because of the discount of 20% i.e. the expected price is 80% of the value such that
![\\EP=\int\limits^{10}_{5} {x \frac{50}{x^3}} \, dx +\int\limits^{\infty}_{10} {0.8x \frac{50}{x^3}} \, dx\\\\EP=\int\limits^{10}_{5} {\frac{50}{x^2}} \, dx +\int\limits^{\infty}_{10} {\frac{40}{x^2}} \, dx\\EP=[\frac{50}{-x}]_5^{10} +[\frac{40}{-x}]_{10}^{\infty} \\EP=[\frac{-50}{10}+\frac{50}{5}] +[\frac{-40}{\infty}+\frac{40}{10}]\\\\EP=-5+10+0+4\\EP=9](https://tex.z-dn.net/?f=%5C%5CEP%3D%5Cint%5Climits%5E%7B10%7D_%7B5%7D%20%7Bx%20%5Cfrac%7B50%7D%7Bx%5E3%7D%7D%20%5C%2C%20dx%20%2B%5Cint%5Climits%5E%7B%5Cinfty%7D_%7B10%7D%20%7B0.8x%20%5Cfrac%7B50%7D%7Bx%5E3%7D%7D%20%5C%2C%20dx%5C%5C%5C%5CEP%3D%5Cint%5Climits%5E%7B10%7D_%7B5%7D%20%7B%5Cfrac%7B50%7D%7Bx%5E2%7D%7D%20%5C%2C%20dx%20%2B%5Cint%5Climits%5E%7B%5Cinfty%7D_%7B10%7D%20%7B%5Cfrac%7B40%7D%7Bx%5E2%7D%7D%20%5C%2C%20dx%5C%5CEP%3D%5B%5Cfrac%7B50%7D%7B-x%7D%5D_5%5E%7B10%7D%20%2B%5B%5Cfrac%7B40%7D%7B-x%7D%5D_%7B10%7D%5E%7B%5Cinfty%7D%20%5C%5CEP%3D%5B%5Cfrac%7B-50%7D%7B10%7D%2B%5Cfrac%7B50%7D%7B5%7D%5D%20%2B%5B%5Cfrac%7B-40%7D%7B%5Cinfty%7D%2B%5Cfrac%7B40%7D%7B10%7D%5D%5C%5C%5C%5CEP%3D-5%2B10%2B0%2B4%5C%5CEP%3D9)
The expected payment by the customer at the checkout is $9.
The answer is B.
I hope this helps!