Answer: i. There are 140 students willing to pay $20.
ii. There are 200 staff members willing to pay $35.
iii. There are 100 faculty members willing to pay $50.
Step-by-step explanation: Suppose there are three types of consumers who attend concerts at Marshall university's performing arts center: students, staff, and faculty. Each of these groups has a different willingness to pay for tickets; within each group, willingness to pay is identical. There is a fixed cost of $1,000 to put on a concert, but there are essentially no variable costs.
For each concert:
A) If the performing arts center can charge only one price, what price should it charge? What are profits at this price? B) If the performing arts center can price discriminate and charge two prices, one for students and another for faculty/staff, what are its profits?
C) If the performing arts center can perfectly price discriminate and charge students, staff, and faculty three separate prices, what are its profits?
Answer:
$ 710606.606
Step-by-step explanation:
Let original price be x
x - 34% of x = 469000
=> X - 34x/100 = 469000
=> 100x -34x/100 = 469000
=> 66x/100 = 469000
=> 66x = 46900000
=> X = 46900000/66
=> X = 710606.606
<span>7,004,000 in scientific notation.
=</span>7.004 x 10^6
as 7 is the first non zero digit
so decimal jumbed 6 numbers from right to left and exponent will be positive
option A is correct
hopr this helps
1.) slope=2
2.) slope= -5/4
3.) slope= 7/5
Answer:
m∠EGF = 65° and m∠CGF = 115°
Step-by-step explanation:
Given;
∠EFG = 50°
EF = FG
Solution,
In ΔEFG m∠EFG = 50° and EF = FG.
Since triangle is an isosceles triangle hence their base angles are always equal.
∴
Let the measure of ∠EGF be x.
∴ 
Now by angle Sum property which states "The sum of all the angles of a triangle is 180°."
m∠EFG + m∠FEG + ∠EGF = 180

Hence
m∠EGF = 65°
Also 'The sum of angles that are formed on a straight line is equal to 180°."
m∠EGF + m∠CGF = 180°
65° + m∠CGF = 180°
m∠CGF = 180° - 65° = 115°
Hence m∠EGF = 65° m∠CGF = 115°