1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
bearhunter [10]
3 years ago
9

Convert centimeters to metre?

Physics
2 answers:
WINSTONCH [101]3 years ago
8 0
100cm=1m
1cm=1/100m
1cm=0.01m
Hope you understand it.
Romashka [77]3 years ago
4 0

Answer:1 cm=0.01

Explanation: Uu divide

You might be interested in
What is the heat extracted from the cold reservoir for the refrigerator?
zaharov [31]
What is the heat extracted from the cold reservoir for the refrigerator shown in(Figure 1) ? Assume that W1 = -123J and W2 = 88J . 

<span>Qc= _________ </span>

<span>Part B 
</span>
K=105J
7 0
3 years ago
A small rock is thrown straight up with initial speed v0 from the edge of the roof of a building with height H. The rock travels
Crank

Answer:

v_{avg}=\dfrac{3gH+v_0^2}{v_0+\sqrt{v_0^2+2gH} }

Explanation:

The average velocity is total displacement divided by time:

v_{avg} =\dfrac{D_{tot}}{t}

And in the case of vertical v_{avg}

v_{avg}=\dfrac{y_{tot}}{t}

where y_{tot} is the total vertical displacement of the rock.

The vertical displacement of the rock when it is thrown straight up from height H with initial velocity v_0 is given by:

y=H+v_0t-\dfrac{1}{2} gt^2

The time it takes for the rock to reach maximum height is when y'(t)=0, and it is

t=\frac{v_0}{g}

The vertical distance it would have traveled in that time is

y=H+v_0(\dfrac{v_0}{g} )-\dfrac{1}{2} g(\dfrac{v_0}{g} )^2

y_{max}=\dfrac{2gH+v_0^2}{2g}

This is the maximum height the rock reaches, and after it has reached this height the rock the starts moving downwards and eventually reaches the ground. The distance it would have traveled then would be:

y_{down}=\dfrac{2gH+v_0^2}{2g}+H

Therefore, the total displacement throughout the rock's journey is

y_{tot}=y_{max}+y_{down}

y_{tot} =\dfrac{2gH+v_0^2}{2g}+\dfrac{2gH+v_0^2}{2g}+H

\boxed{y_{tot} =\dfrac{2gH+v_0^2}{g}+H}

Now wee need to figure out the time of the journey.

We already know that the rock reaches the maximum height at

t=\dfrac{v_0}{g},

and it should take the rock the same amount of time to return to the roof, and it takes another t_0 to go from the roof of the building to the ground; therefore,

t_{tot}=2\dfrac{v_0}{g}+t_0

where t_0 is the time it takes the rock to go from the roof of the building to the ground, and it is given by

H=v_0t_0+\dfrac{1}{2}gt_0^2

we solve for t_0 using the quadratic formula and take the positive value to get:

t_0=\dfrac{-v_0+\sqrt{v_0^2+2gH}  }{g}

Therefore the total time is

t_{tot}= 2\dfrac{v_0}{g}+\dfrac{-v_0+\sqrt{v_0^2+2gH}  }{g}

\boxed{t_{tot}= \dfrac{v_0+\sqrt{v_0^2+2gH}  }{g}}

Now the average velocity is

v_{avg}=\dfrac{y_{tot}}{t}

v_{avg}=\dfrac{\frac{2gH+v_0^2}{g}+H }{\frac{v_0+\sqrt{v_0^2+2gH} }{g} }

\boxed{v_{avg}=\dfrac{3gH+v_0^2}{v_0+\sqrt{v_0^2+2gH} } }

5 0
3 years ago
choose the correct anwer 9: the range of the gravitional force is given by A: 10_2m B:10_15m C: infinite D: 10_10m​
frosja888 [35]

Answer:

The answer is C

Explanation:

The magnitude of the gravitational force depends inversely on the square of the radial distance between the centers of the two masses. Thus, essentially, the force can only fall to zero, when the denominator that is r becomes infinite.

6 0
3 years ago
Lol i'm going to fail please help
Novosadov [1.4K]

Answer:

Explanation:

The frequency is 16.0 Hz. That means that 16 of these waves can pass a single point in 1 second. We are given frequency and wavelength. The equation that relates them is

f=\frac{v}{\lambda} where f is frequency, v is velocity, and λ is wavelength. Putting all this together:

16.0=\frac{v}{97.5} and solving for velocity,

v = 16.0(97.5) so

v = 1560 m/s. This wave can travel 1560 meters in a single second!!! Now that we know this velocity, we can use it in a proportion to find our unknown, which is how long, t, it will take to hear this sound 11000m away. (11 km is 11000m):

\frac{1560m}{1s}=\frac{11000}{t} and cross multiply to get

1560t = 11000 so

t = 7.1 seconds

6 0
3 years ago
What is the measurement of loudness of sounds
AURORKA [14]
The measurement of sound is in decibels.
4 0
3 years ago
Other questions:
  • The milky way galaxy is most likely an example of which type of galaxy?
    5·2 answers
  • Explain what kind of heat transfer occurs when you burn yourself on a hot car seat in the summer.
    14·1 answer
  • Which of the following is not an example of accelerated motion
    9·2 answers
  • College students receive an average of four phone calls
    6·1 answer
  • The charges on two metallic balls are 5.0 and 7.0 coulombs respectively. They are kept 1.2 meters apart. What is the force of in
    6·1 answer
  • 2 ways to change frictional force between 2 objects
    11·2 answers
  • TRUE OR FALSE?
    6·1 answer
  • How do u know that liquid exerts pressure ?​
    5·2 answers
  • What movement allows us to move our side to side?
    7·1 answer
  • Please show the work and steps. The answer is (3.3 s, 15 m/s)
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!