Answer:
The velocity of the flow at point 1 is nine times greater than the velocity at point 2.
Explanation:
We know that the same volume of water entering through point 1 must exit through point 2.
The volume of water per unit of time or the volumetric flow is defined by:
![V_{flow}=v*A\\ where:\\V_{flow}= flow [m^3/s]\\v=velocity[m/s]\\A=area [m^2]](https://tex.z-dn.net/?f=V_%7Bflow%7D%3Dv%2AA%5C%5C%20where%3A%5C%5CV_%7Bflow%7D%3D%20flow%20%5Bm%5E3%2Fs%5D%5C%5Cv%3Dvelocity%5Bm%2Fs%5D%5C%5CA%3Darea%20%5Bm%5E2%5D)
If 
therefore

The mechanical energy of an object is the sum of its potential and kinetic energy.
Because the ball is on the ground, its potential energy is 0.
Its kinetic energy is given by:
K.E = 1/2 mv²
K.E = 1/2 x 1 x 2²
K.E = 2 J
Mechanical energy = 2 + 0
Mechanical energy = 2 J
The answer is B.
Option B is correct. If an incident light ray hits a flat, smooth object at 28°. It will reflect off at an angle of 28°.
<h3>What is the law of reflection?</h3>
The law of reflection specifies that upon reflection from a downy surface, the slope of the reflected ray is similar to the slope of the incident ray.
The reflected ray is consistently in the plane determined by the incident ray and perpendicular to the surface at the point of reference of the incident ray.
When the light rays descend on the smooth surface, the angle of reflection is similar to the angle of incidence, also the incident ray, the reflected ray, and the normal to the surface all lie in a similar plane.
If an incident light ray hits a flat, smooth object at 28 degrees, it will reflect off at an angle of 28°.
Hence, option B is correct
To learn more about the law of reflection, refer to the link;
brainly.com/question/12029226
#SPJ1