Answer:
m 200 g , T 0.250 s,E 2.00 J
;
2 2 25.1 rad s
T 0.250
(a)
2 2
k m 0.200 kg 25.1 rad s 126 N m
(b)
2
2 2 2.00 0.178 mm 200 g , T 0.250 s,E 2.00 J
;
2 2 25.1 rad s
T 0.250
(a)
2 2
k m 0.200 kg 25.1 rad s 126 N m
(b)
2
2 2 2.00 0.178 m
Explanation:
That is a reason
Answer:
D
Explanation:
he describes as he writes them down
Answer:
the resulting angular acceleration is 15.65 rad/s²
Explanation:
Given the data in the question;
force generated in the patellar tendon F = 400 N
patellar tendon attaches to the tibia at a 20° angle 3 cm( 0.03 m ) from the axis of rotation at the knee.
so Torque produced by the knee will be;
T = F × d⊥
T = 400 N × 0.03 m × sin( 20° )
T = 400 N × 0.03 m × 0.342
T = 4.104 N.m
Now, we determine the moment of inertia of the knee
I = mk²
given that; the lower leg and foot have a combined mass of 4.2kg and a given radius of gyration of 25 cm ( 0.25 m )
we substitute
I = 4.2 kg × ( 0.25 m )²
I = 4.2 kg × 0.0626 m²
I = 0.2625 kg.m²
So from the relation of Moment of inertia, Torque and angular acceleration;
T = I∝
we make angular acceleration ∝, subject of the formula
∝ = T / I
we substitute
∝ = 4.104 / 0.2625
∝ = 15.65 rad/s²
Therefore, the resulting angular acceleration is 15.65 rad/s²
Answer:
<h2><u>Constant</u></h2>
Explanation:
Please don't comment in this question's comment box
<h2>Thanks</h2>