Let us start from considering monochromatic light as an incidence on the film of a thickness t whose material has an index of refraction n determined by their respective properties.
From this point of view part of the light will be reflated and the other will be transmitted to the thin film. That additional distance traveled by the ray that was reflected from the bottom will be twice the thickness of the thin film at the point where the light strikes. Therefore, this relation of phase differences and additional distance can be expressed mathematically as

We are given the second smallest nonzero thickness at which destructive interference occurs.
This corresponds to, m = 2, therefore


The index of refraction of soap is given, then

Combining the results of all steps we get

Rearranging, we find



Answer:
The correct option is;
Force of Friction
Explanation:
As coach Hogue rode his motorcycle round in circle on the wet pavement, the motorcycle and the coach system tends to move in a straight path but due to intervention by the coach they maintain the circular path
The motion equation is
v = ωr and we have the centripetal acceleration given by
α = ω²r and therefore centripetal force is then
m×α = m × ω²r = m × v²/r
The force required to keep the coach and the motorcycle system in their circular path can be obtained by the impressed force of friction acting towards the center of the circular motion.
A. it can be modified or rejected
The difference in the pressure between the inside and outside will be 369.36 N/m²
<h3>What is pressure?</h3>
The force applied perpendicular to the surface of an item per unit area across which that force is spread is known as pressure.
It is denoted by P. The pressure relative to the ambient pressure is known as gauge pressure.
The given data in the problem is;
dP is the change in the presure=?
Using Bernoulli's Theorem;

Hence, the difference in the pressure between the inside and outside will be 369.36 N/m²
To learn more about the pressure refer to the link;
brainly.com/question/356585
#SPJ1
The answer is definitely C.) their molecules move at the same average speed