Answer:
Intensity = 11.56W/m²
The energy flowing through the given area is 4.55 J
Explanation:
The expression for the intensity of the electromagnetic wave is,

Here,
is the permittivity of the free space,
is the electric field amplitude and
c is the speed of the light.
substitute
⁸m/s for c
8.85×10 −12 C²
/N⋅m² for 
and 93.3 V/m for 

The expression for the energy is,
E = I×A×t
Here, I is the intensity of the electromagnetic wave,
A is the area, and
t is the time.
Substitute
11.56W/m² for I
0.0287m ² for A
13.7s for t

The energy flowing through the given area is 4.55 J
So, for the visible range, the colors are arranged in order of increasing frequency like this: Red < Orange<span> < </span>Yellow<span> < Green < Blue < Indigo < </span>VIolet<span>.</span>
Answer:
, the minus meaning west.
Explanation:
We know that linear momentum must be conserved, so it will be the same before (
) and after (
) the explosion. We will take the east direction as positive.
Before the explosion we have
.
After the explosion we have pieces 1 and 2, so
.
These equations must be vectorial but since we look at the instants before and after the explosions and the bomb fragments in only 2 pieces the problem can be simplified in one dimension with direction east-west.
Since we know momentum must be conserved we have:

Which means (since we want
and
):

So for our values we have:

63360
5280 feet*12 inches in every foot=63360
Answer:
v= - 4.507 i - 2.363 j
Explanation:
Given that
mc= 1490 kg
vc= 9.5 m/s ( - i)
mt= 1650 kg
vt = 6.4 m/s ( -j)
There is any external force so linear momentum will remain conserve.
Lets take final speed is v.
mc .vc + mt . vt = ( mc+mt) v
1490 x 9.5 ( - i) + 1650 x 6.4 ( -j) = ( 1490+1650) v
14,155 ( -i) + 10,560 ( - j) = 3140 v
v= - 4.507 i - 2.363 j