B) two real roots is the answer because it is bigger than 0.
It looks like the differential equation is

Check for exactness:

As is, the DE is not exact, so let's try to find an integrating factor <em>µ(x, y)</em> such that

*is* exact. If this modified DE is exact, then

We have

Notice that if we let <em>µ(x, y)</em> = <em>µ(x)</em> be independent of <em>y</em>, then <em>∂µ/∂y</em> = 0 and we can solve for <em>µ</em> :

The modified DE,

is now exact:

So we look for a solution of the form <em>F(x, y)</em> = <em>C</em>. This solution is such that

Integrate both sides of the first condition with respect to <em>x</em> :

Differentiate both sides of this with respect to <em>y</em> :

Then the general solution to the DE is

Answer:
D
Step-by-step explanation:
Its D because they Because they wouldnt just do one school they would do multipule school to see the amount and how much
Answer: the correct answer is 20
Step-by-step explanation:
The formula for determining the distance between two points on a straight line is expressed as
Distance = √(x2 - x1)² + (y2 - y1)²
Where
x2 represents final value of x on the horizontal axis
x1 represents initial value of x on the horizontal axis.
y2 represents final value of y on the vertical axis.
y1 represents initial value of y on the vertical axis.
From the graph given,
x2 = - 7
x1 = 5
y2 = - 7
y1 = 9
Therefore,
Distance = √(- 7 - 5)² + (- 7 - 9)²
Distance = √(- 12²) + (- 16)²
= √(144 + 256) = √400
Distance = 20
Given:
Profit : 15,000,000
Cost: 30 per basketball hoop
production: 1 million hoops
price: 50 - 5x²
Profit = Sales - Cost
15,000,000 = sales - 30(1,000,000)
15,000,000 + 30,000,000 = sales
45,000,000 = sales
45,000,000 / 1,000,000 = 45 sales price.