We are asked in the problem to evaluate the integral of <span>(cosec^2 x-2005)÷cos^2005 x dx. The function is an example of a complex function with a degree that is greater than one and that uses special rules to integrate the function via the trigonometric functions. For example, we integrate
2005/cos^2005x dx which is equal to 2005 sec^2005 x since sec is the inverse of cos. The integral of this function when n >3 is equal to I=</span><span>∫<span>sec(n−2)</span>xdx+∫tanx<span>sec(n−3)</span>x(secxtanx)dx
Then,
</span><span>∫tanx<span>sec(<span>n−3)</span></span>x(secxtanx)dx=<span><span>tanx<span>sec(<span>n−2)</span></span>x/(</span><span>n−2)</span></span>−<span>1/(<span>n−2)I
we can then integrate the function by substituting n by 3.
On the first term csc^2 2005x / cos^2005 x we can use the trigonometric identity csc^2 x = 1 + cot^2 x to simplify the terms</span></span></span>
The place value in 6,035 is 30
Answer:
Hence the adjusted R-squared value for this model is 0.7205.
Step-by-step explanation:
Given n= sample size=20
Total Sum of square (SST) =1000
Model sum of square(SSR) =750
Residual Sum of Square (SSE)=250
The value of R ^2 for this model is,
R^2 = \frac{SSR}{SST}
R^2 = 750/1000 =0.75
Adjusted :
Where k= number of regressors in the model.
Its maybe Find the area of the shaded portion sorry it’s wrong I tried my best
Answer:
-2
Step-by-step explanation:
7-3/2-4=-2
use slope formula