We can use a modified form of the Pythagorean Theorem to find the length of x, also known as side b.
Pythagorean Theorem:
a^2 + b^2 = c^2
We can fill in the values of a^2 and c^2, and then solve for b.
14^2 + b^2 = 25^2
196 + b^2 = 625
Subtract 196 from both sides.
b^2 = 429
√ both sides.
b = 20.7
<h3>The value of x, or b, is equal to 20.7.</h3>
Answer:
C 111
Step-by-step explanation:
This is the answer not sure if you wanted it graph or not
To solve this problem you must apply the proccedure shown below:
1. You have that the ellipse given as a vertical major axis (a=13), therefore, taking the ellipse with its center at the origin, you have the following equation:
(y^2/a^2)+(x^2/b^2)=1
2. You have the distance from the center of the ellipse to the focus:
c=12, therefore, you can calculate the value of b, the minor radius:
c^2=a^2-b^2
b=√(13^3-12^2)
b=5
3. Therefore, the equation is:
a^2=169
b^2=25
(y^2/169)+(x^2/25)=1
The answer is: (y^2/169)+(x^2/25)=1
<span>a) Differentiate both sides of lnq − 3lnp + 0.003p=7 with respect to p, keeping in mind that q is a function of p and so using the Chain Rule to differentiate any functions of q:
(1/q)(dq/dp) − 3/p + 0.003 = 0
dq/dp = (3/p − 0.003)q.
So E(p) = dq/dp (p/q) = (3/p − 0.003)(q)(p/q) = (3/p − 0.003)p = 3 − 0.003p.
b) The revenue is pq.
Note that (d/dp) of pq = q + p dq/dp = q[1 + dq/dp (p/q)] = q(1 + E(p)), which is zero when E(p) = −1. Therefore, to maximize revenue, set E(p) = −1:
3 − 0.003p = −1
0.003p = 4
p = 4/0.003 = 4000/3 = 1333.33</span>