Answer:
a) 81π in³
b) 27 in³
c) divide the volume of the slice of cake by the volume of the whole cake
d) 10.6%
e) see explanation
Step-by-step explanation:
<h3><u>Part (a)</u></h3>
The cake can be modeled as a <u>cylinder </u>with:
- diameter = 9 in
- height = 4 in



<h3><u>Part (b)</u></h3>

If each slice of cake has an arc length of 3 in, then the volume of each slice is 3/9π of the entire volume of the cake.

<h3><u>Part (c)</u></h3>
The volume of each slice of cake is 27 in³.
The volume of the whole cake is 81π in³.
To calculate the probability that the first slice of cake will have the marble, divide the volume of a slice by the volume of the whole cake:

<h3><u>Part (d)</u></h3>
Probability is approximately 10.6% (see above for calculation)
<h3><u>Part (e)</u></h3>
If the four slices of cake are cut and passed out <em>before </em>anyone eats or looks for the marble, the probability of getting the marble is the same for everyone. If one slice of cake is cut and checked for the marble before the next slice is cut, the probability will increase as the volume of the entire cake decreases, <u>until the marble is found</u>. So it depends upon how the cake is cut and distributed as to whether Hattie's strategy makes sense.
Interset always positive ,if a bank don't give interest even though interset remains zero doesn't become negative
Let's find interest here to proof
- Principal=P=48750
- Annual=A=49975
Interest:-
Answer:
23rd term of the arithmetic sequence is 118.
Step-by-step explanation:
In this question we have been given first term a1 = 8 and 9th term a9 = 48
we have to find the 23rd term of this arithmetic sequence.
Since in an arithmetic sequence

here a = first term
n = number of term
d = common difference
since 9th term a9 = 48
48 = 8 + (9-1)d
8d = 48 - 8 = 40
d = 40/8 = 5
Now 
= 8 + (23 -1)5 = 8 + 22×5 = 8 + 110 = 118
Therefore 23rd term of the sequence is 118.
I didn't round by the answer would be 115.575042 miles per second.