Answer:
19% of households have more cars than the garage can hold
Step-by-step explanation:
We are given the following distribution for the number of cars owned by a family.
Number of cars X: 0 1 2 3 4 5 6
Probability: 0.07 0.31 0.43 0.12 0.04 0.02 0.01
We have to find the percentage of households have more cars than the garage can hold.
A garage can hold two cars. Thus, the household with more than two cars are the households that have more cars than the garage can hold.
The given distribution is a discrete probability distribution.
Thus, we evaluate:

Thus, 19% of households have more cars than the garage can hold.
Step-by-step explanation:
![2 ^{ \frac{1}{2} } = 2 ^{1 \times \frac{1}{2} } = \sqrt{2} \\ {2}^{ \frac{2}{3} } = 2 ^{2 \times \frac{1}{3} } = \sqrt[3]{2 ^{2} } \\ 3 ^{ \frac{3}{2} } = {3}^{3 \times \frac{1}{2} } = \sqrt[]{ {3}^{3} } \\ {3}^{ \frac{1}{3} } = 3 ^{1 \times \frac{1}{3} } = \sqrt[3]{3}](https://tex.z-dn.net/?f=2%20%5E%7B%20%5Cfrac%7B1%7D%7B2%7D%20%7D%20%20%3D%202%20%5E%7B1%20%5Ctimes%20%20%5Cfrac%7B1%7D%7B2%7D%20%7D%20%20%3D%20%20%5Csqrt%7B2%7D%20%20%5C%5C%20%20%7B2%7D%5E%7B%20%5Cfrac%7B2%7D%7B3%7D%20%7D%20%20%3D%202%20%5E%7B2%20%5Ctimes%20%20%5Cfrac%7B1%7D%7B3%7D%20%7D%20%20%3D%20%20%5Csqrt%5B3%5D%7B2%20%5E%7B2%7D%20%7D%20%20%5C%5C%203%20%5E%7B%20%5Cfrac%7B3%7D%7B2%7D%20%7D%20%20%3D%20%20%7B3%7D%5E%7B3%20%5Ctimes%20%20%5Cfrac%7B1%7D%7B2%7D%20%7D%20%20%3D%20%20%5Csqrt%5B%5D%7B%20%7B3%7D%5E%7B3%7D%20%7D%20%20%5C%5C%20%20%7B3%7D%5E%7B%20%5Cfrac%7B1%7D%7B3%7D%20%7D%20%20%3D%203%20%5E%7B1%20%5Ctimes%20%20%5Cfrac%7B1%7D%7B3%7D%20%7D%20%20%3D%20%20%5Csqrt%5B3%5D%7B3%7D%20)
Answer:
5/4 or 1.25
Step-by-step explanation:
Slope of the line containing (2,6) & (7,2):
m = (y2-y1)/(x2-x1)
m = (2-6)/(7-2)
= -4/5
For Perpendicular lines,
m1×m2 = -1
(-4/5)×m2 = -1
m2 = -1 × (-5/4)
m2 = 5/4 or 1.25
Answer: Manuel Because He was on the motor bike less. She was in the car driving for 4 HOURS he was on the bike less for a grand total of 3.5 HOURS so MANUEL was faster. :)
And he was faster by 30 minutes...
This is one of those questions where they try to put you focus on something else like speed speed does not matter!! :)