Answer:
d and e
Explanation:
We have 5 solutions with different molar concentrations, that is, the quotient between the number of moles of solute and the liters of solution. This can be expressed as mol/L or M. The most dilute would be the one having the less number of moles of solute per liters of solution, that is, solution d or e, which have the same concentration. If we order them from the most diluted to the most concentrated, we get:
d = e < a < b < c
Surface tension under water results from greater attraction of liquid molecules to each other, due to a process called cohesion, than to molecules in the air, due to a process called adhesion.
Answer:
Aluminum had more value than gold in the 1820s, because it was harder to obtain. Hope this helped :)
Hey there!
We know that a chemical reaction is balanced when there is the same amount of each element on both sides of the equation.
According to the law of conservation of mass, matter cannot be created or destroyed, so we must have the same amount of each element on each side of a chemical equation.
We count the amount of each element on each side, and the products should have the same number as the reactants.
Hope this helps!
We are told that there are 1.55 x 10²³ molecules of Cl₂ and we need to calculate the mass of these molecules. We need to do several conversions. The easiest will be to convert the amount of molecules to the number of moles present. To do this, we need to use Avogadro's number which is 6.022 x 10²³ molecules/mole.
1.55 x 10²³ molecules / 6.022 x 10²³ molecules/mole = 0.257 moles Cl₂
Now that we have the moles of Cl₂ present, we can convert this value to a mass of Cl₂ by using the molecular mass of Cl₂. The molecular mass is 70.906 g/mol.
0.257 moles Cl₂ x 70.906 g/mol = 18.3 g Cl₂
Therefore, 1.55 x 10²³ molecules of Cl₂ will have a mass of 18.3 g.