Temperature can change a reaction rate because adding or taking away heat means energy is being added or taken away. When energy is added, the particles speed up, so there is a greater chance of the reactants colliding to form the products, which increases the reaction rate. When energy is taken away, the particles more slower, so they don't collide as easily, which slows down the reaction rate.
Therefore, the answer is D.
If the refrigerator has no room to cool the meat that you've just cooked, then you should clear it with other stuff or food that has not been consumed for days. There might be some goods that are not good for consumption anymore even though it has been placed in the ref for a couple of days. Hope this answers your question.
Answer:
B.) 1.3 atm
Explanation:
To find the new pressure, you need to use Gay-Lussac's Law:
P₁ / T₁ = P₂ / T₂
In this equation, "P₁" and "T₁" represent the initial pressure and temperature. "P₂" and "T₂" represent the final pressure and temperature. After converting the temperatures from Celsius to Kelvin, you can plug the given values into the equation and simplify to find P₂.
P₁ = 1.2 atm P₂ = ? atm
T₁ = 20 °C + 273 = 293 K T₂ = 35 °C + 273 = 308 K
P₁ / T₁ = P₂ / T₂ <----- Gay-Lussac's Law
(1.2 atm) / (293 K) = P₂ / (308 K) <----- Insert values
0.0041 = P₂ / (308 K) <----- Simplify left side
1.3 = P₂ <----- Multiply both sides by 308
ionic bond is formed between ca and cl forming molecule cacl2 ca has 2 velancy and cl has one velancy (ca has 2 electrons in its outer most shell while cl has 1 electron vecancy in its outermost shell). So ca would make bond with 2 cl atoms
Answer:
moles of carbon dioxide produced are 410.9 mol.
Explanation:
Given data:
Mass of C₆H₁₄O₂ = 16.5 g
Moles of O₂ = 499 mol
Moles of CO₂ = ?
First of all we will write the balance chemical equation.
2C₆H₁₄O₂ + 17O₂ → 14CO₂ + 12H₂O
moles of C₆H₁₄O₂ = mass × molar mass
moles of C₆H₁₄O₂ = 16.5 g × 118 g/mol
moles of C₆H₁₄O₂ = 1947 mol
Now we compare the moles of CO₂ with moles of O₂ and C₆H₁₄O₂ from balance chemical equation.
O₂ : CO₂
17 : 14
499 : 14/17× 499 = 410.9 moles
C₆H₁₄O₂ : CO₂
2 : 14
1947 : 14/2× 1947 = 13629 moles
Oxygen will be limiting reactant so moles of carbon dioxide produced are 410.9 mol.