Answer:When neurons communicate, an electrical impulse triggers the release of neurotransmitters from the axon into the synapse. The neurotransmitters cross the synapse and bind to special molecules on the other side, called receptors. Receptors are located on the dendrites. Receptors receive and process the message.
Explanation:
I think it is A because the genes of the eyes and the body are different
The very right of the diagram.
<h2>Membrane potential </h2>
Explanation:
- Membrane potential represents charge difference across the membrane, all biological cells are negative inside (cytoplasm) and positive outside (due to difference in ionic distribution)
- In a typical neuron cell membrane potential of cytoplasm is negative at rest (when no stimulus is applied) hence called resting membrane potential
- Resting membrane potential of excitable cells is established by Na+ and K+pump
- Repolarization starts with the efflux of K+ by the opening of voltage gated K+ channels
- Voltage gated K+ channels starts to open when voltage gated Na+ channels becomes inactive
- Hyperpolarization occurs due to excessive efflux of K+ by voltage gated K+ channels
- Additional efflux of K+ occurs due to slow inactivation of voltage gated K+ channels
Answer:
Tertiary.
Explanation:
Primary structure of proteins refers to the order of amino acids that make up the protein. The heme is an nonprotein non-amino acid, so it is not involved at this stage.
Tertiary structure of proteins is the overall 3-D folding of the protein (it comes after secondary, which involves folding into a repeated pattern). The heme bonds to its correct position on the hemoglobin during this stage and helps in correct folding.