Answer:
(a) (6, 2)
Step-by-step explanation:
The system of equations has one of them in y= form, so it lends itself to solution by substitution.
__
Using the equation for y to substitute into the first equation, we have ...
2x -y = 10
2x -(-1/2x +5) = 10 . . . . . substitute for y
2x +1/2x -5 = 10 . . . . . eliminate parentheses
5/2x = 15 . . . . . . . . . add 5, collect terms
x = 6 . . . . . . . . . . . multiply by 2/5
Using the equation for y, we have ...
y = -1/2(6) +5 = -3 +5
y = 2
The solution is (x, y) = (6, 2).
We can't eliminate as is so we have to change something up there in the equations to get either the x values the same number but opposite signs, or the y values the same number but opposite signs. I chose to change the y values to the same number but different signs. In the first equation y is -3y and in the second one, y is -8y. The LCM of both of those numbers is 24, so we will multiply the first equation by an 8 (8*3=24) and the second equation by 3 (3*8=24) but since they are both negative right now, one of those multiplications has to involve a negative because - * - = +. Set it up like this:
8(-10x - 3y = -18)
-3(-7x - 8y = 11)
Multiply both of those all the way through to get new equations:
-80x - 24y = -144
21x +24y = -33
Now the y's cancel each other out leaving only the x's:
-59x = -177 and x = 3. Now plug that 3 into either one of the original equations to find the y value. Either equation will work; you'll get the same answer using either one. Promise. -7(3) - 8y = 11 gives a y value of -4. so your solution is (3, -4) or B above.
i would say you need to divide 45 and 3. then subtract 45 and 15. then with those two numbers you need to put the amount from 45 / 3 on the top and the 15-45 on the bottom. you will get the probability.
i think don't quote me
<h3>
Answer: 41</h3>
Work Shown:
f(x) = 6x^2 - 13
f(x) = 6(x)^2 - 13
f(-3) = 6(-3)^2 - 13 ... replace every x with -3; use PEMDAS to simplify
f(-3) = 6(9) - 13
f(-3) = 54 - 13
f(-3) = 41