Answer:
As can be clearly seen from the attached diagram angles PBC and BAD are congruent by the Corresponding Angles Theorem AB acts as the transversal for the lines BC and AD which are parallel.
Also, it can be clearly seen that the angles ABC and BAT are congruent by the Alternate Interior Angles Theorem as AB acts as the transversal for the lines BC and TAD which are parallel.
Thus, the only option from the given list of options which matches the answer is Option A.
Thus, Option A is the correct option and thus the final answer.
Step-by-step explanation:
Answer:
The arc length is ![\dfrac{21}{16}](https://tex.z-dn.net/?f=%5Cdfrac%7B21%7D%7B16%7D)
Step-by-step explanation:
Given that,
The given curve between the specified points is
![x=\dfrac{y^4}{16}+\dfrac{1}{2y^2}](https://tex.z-dn.net/?f=x%3D%5Cdfrac%7By%5E4%7D%7B16%7D%2B%5Cdfrac%7B1%7D%7B2y%5E2%7D)
The points from
to ![(\dfrac{9}{8},2)](https://tex.z-dn.net/?f=%28%5Cdfrac%7B9%7D%7B8%7D%2C2%29)
We need to calculate the value of ![\dfrac{dx}{dy}](https://tex.z-dn.net/?f=%5Cdfrac%7Bdx%7D%7Bdy%7D)
Using given equation
![x=\dfrac{y^4}{16}+\dfrac{1}{2y^2}](https://tex.z-dn.net/?f=x%3D%5Cdfrac%7By%5E4%7D%7B16%7D%2B%5Cdfrac%7B1%7D%7B2y%5E2%7D)
On differentiating w.r.to y
![\dfrac{dx}{dy}=\dfrac{d}{dy}(\dfrac{y^2}{16}+\dfrac{1}{2y^2})](https://tex.z-dn.net/?f=%5Cdfrac%7Bdx%7D%7Bdy%7D%3D%5Cdfrac%7Bd%7D%7Bdy%7D%28%5Cdfrac%7By%5E2%7D%7B16%7D%2B%5Cdfrac%7B1%7D%7B2y%5E2%7D%29)
![\dfrac{dx}{dy}=\dfrac{1}{16}\dfrac{d}{dy}(y^4)+\dfrac{1}{2}\dfrac{d}{dy}(y^{-2})](https://tex.z-dn.net/?f=%5Cdfrac%7Bdx%7D%7Bdy%7D%3D%5Cdfrac%7B1%7D%7B16%7D%5Cdfrac%7Bd%7D%7Bdy%7D%28y%5E4%29%2B%5Cdfrac%7B1%7D%7B2%7D%5Cdfrac%7Bd%7D%7Bdy%7D%28y%5E%7B-2%7D%29)
![\dfrac{dx}{dy}=\dfrac{1}{16}(4y^{3})+\dfrac{1}{2}(-2y^{-3})](https://tex.z-dn.net/?f=%5Cdfrac%7Bdx%7D%7Bdy%7D%3D%5Cdfrac%7B1%7D%7B16%7D%284y%5E%7B3%7D%29%2B%5Cdfrac%7B1%7D%7B2%7D%28-2y%5E%7B-3%7D%29)
![\dfrac{dx}{dy}=\dfrac{y^3}{4}-y^{-3}](https://tex.z-dn.net/?f=%5Cdfrac%7Bdx%7D%7Bdy%7D%3D%5Cdfrac%7By%5E3%7D%7B4%7D-y%5E%7B-3%7D)
We need to calculate the arc length
Using formula of arc length
![L=\int_{a}^{b}{\sqrt{1+(\dfrac{dx}{dy})^2}dy}](https://tex.z-dn.net/?f=L%3D%5Cint_%7Ba%7D%5E%7Bb%7D%7B%5Csqrt%7B1%2B%28%5Cdfrac%7Bdx%7D%7Bdy%7D%29%5E2%7Ddy%7D)
Put the value into the formula
![L=\int_{1}^{2}{\sqrt{1+(\dfrac{y^3}{4}-y^{-3})^2}dy}](https://tex.z-dn.net/?f=L%3D%5Cint_%7B1%7D%5E%7B2%7D%7B%5Csqrt%7B1%2B%28%5Cdfrac%7By%5E3%7D%7B4%7D-y%5E%7B-3%7D%29%5E2%7Ddy%7D)
![L=\int_{1}^{2}{\sqrt{1+(\dfrac{y^3}{4})^2+(y^{-3})^2-2\times\dfrac{y^3}{4}\times y^{-3}}dy}](https://tex.z-dn.net/?f=L%3D%5Cint_%7B1%7D%5E%7B2%7D%7B%5Csqrt%7B1%2B%28%5Cdfrac%7By%5E3%7D%7B4%7D%29%5E2%2B%28y%5E%7B-3%7D%29%5E2-2%5Ctimes%5Cdfrac%7By%5E3%7D%7B4%7D%5Ctimes%20y%5E%7B-3%7D%7Ddy%7D)
![L=\int_{1}^{2}{\sqrt{1+(\dfrac{y^3}{4})^2+(y^{-3})^2-\dfrac{1}{2}}dy}](https://tex.z-dn.net/?f=L%3D%5Cint_%7B1%7D%5E%7B2%7D%7B%5Csqrt%7B1%2B%28%5Cdfrac%7By%5E3%7D%7B4%7D%29%5E2%2B%28y%5E%7B-3%7D%29%5E2-%5Cdfrac%7B1%7D%7B2%7D%7Ddy%7D)
![L=\int_{1}^{2}{\sqrt{(\dfrac{y^3}{4})^2+(y^{-3})^2+\dfrac{1}{2}}dy}](https://tex.z-dn.net/?f=L%3D%5Cint_%7B1%7D%5E%7B2%7D%7B%5Csqrt%7B%28%5Cdfrac%7By%5E3%7D%7B4%7D%29%5E2%2B%28y%5E%7B-3%7D%29%5E2%2B%5Cdfrac%7B1%7D%7B2%7D%7Ddy%7D)
![L=\int_{1}^{2}{\sqrt{(\dfrac{y^3}{4}+y^{-3})^2}dy}](https://tex.z-dn.net/?f=L%3D%5Cint_%7B1%7D%5E%7B2%7D%7B%5Csqrt%7B%28%5Cdfrac%7By%5E3%7D%7B4%7D%2By%5E%7B-3%7D%29%5E2%7Ddy%7D)
![L= \int_{1}^{2}{(\dfrac{y^3}{4}+y^{-3})dy}](https://tex.z-dn.net/?f=L%3D%20%5Cint_%7B1%7D%5E%7B2%7D%7B%28%5Cdfrac%7By%5E3%7D%7B4%7D%2By%5E%7B-3%7D%29dy%7D)
![L=(\dfrac{y^{3+1}}{4\times4}+\dfrac{y^{-3+1}}{-3+1})_{1}^{2}](https://tex.z-dn.net/?f=L%3D%28%5Cdfrac%7By%5E%7B3%2B1%7D%7D%7B4%5Ctimes4%7D%2B%5Cdfrac%7By%5E%7B-3%2B1%7D%7D%7B-3%2B1%7D%29_%7B1%7D%5E%7B2%7D)
![L=(\dfrac{y^4}{16}+\dfrac{y^{-2}}{-2})_{1}^{2}](https://tex.z-dn.net/?f=L%3D%28%5Cdfrac%7By%5E4%7D%7B16%7D%2B%5Cdfrac%7By%5E%7B-2%7D%7D%7B-2%7D%29_%7B1%7D%5E%7B2%7D)
Put the limits
![L=(\dfrac{2^4}{16}+\dfrac{2^{-2}}{-2}-\dfrac{1^4}{16}-\dfrac{(1)^{-2}}{-2})](https://tex.z-dn.net/?f=L%3D%28%5Cdfrac%7B2%5E4%7D%7B16%7D%2B%5Cdfrac%7B2%5E%7B-2%7D%7D%7B-2%7D-%5Cdfrac%7B1%5E4%7D%7B16%7D-%5Cdfrac%7B%281%29%5E%7B-2%7D%7D%7B-2%7D%29)
![L=\dfrac{21}{16}](https://tex.z-dn.net/?f=L%3D%5Cdfrac%7B21%7D%7B16%7D)
Hence, The arc length is ![\dfrac{21}{16}](https://tex.z-dn.net/?f=%5Cdfrac%7B21%7D%7B16%7D)
Answer:
I also think 62 correct me if I'm wrong
Answer:
The answer is soooo simple
Step-by-step explanation:
its c