<u>Answer:</u> The expression for equilibrium constant is ![K_{eq}=\frac{[HOCl]^2}{[H_2O][Cl_2]^2}](https://tex.z-dn.net/?f=K_%7Beq%7D%3D%5Cfrac%7B%5BHOCl%5D%5E2%7D%7B%5BH_2O%5D%5BCl_2%5D%5E2%7D)
<u>Explanation:</u>
Equilibrium constant is defined as the ratio of concentration of products to the concentration of reactants each raised to the power their stoichiometric ratios. It is expressed as 
For the general chemical equation:

The expression for
is given as:
![K_c=\frac{[C]^c[D]^d}{[A]^a[B]^b}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BC%5D%5Ec%5BD%5D%5Ed%7D%7B%5BA%5D%5Ea%5BB%5D%5Eb%7D)
For the given chemical reaction:

The expression for
is given as:
![K_{eq}=\frac{[HOCl]^2[HgO.HgCl_2]}{[HgO]^2[H_2O][Cl_2]^2}](https://tex.z-dn.net/?f=K_%7Beq%7D%3D%5Cfrac%7B%5BHOCl%5D%5E2%5BHgO.HgCl_2%5D%7D%7B%5BHgO%5D%5E2%5BH_2O%5D%5BCl_2%5D%5E2%7D)
The concentration of solid is taken to be 0.
So, the expression for
is given as:
![K_{eq}=\frac{[HOCl]^2}{[H_2O][Cl_2]^2}](https://tex.z-dn.net/?f=K_%7Beq%7D%3D%5Cfrac%7B%5BHOCl%5D%5E2%7D%7B%5BH_2O%5D%5BCl_2%5D%5E2%7D)
Answer:
B. A chemical change occurred which caused the liquid's physical properties to change.
Explanation:
The reduction of the temperature of the system meant that the reaction absorbed heat energy from it. This shows that a chemical reaction was in progress. New products were formed, and this is proved by the change in the color to blue.
Answer:
for a i think it is choice 2
for b i think it is the first choice
Explanation:
Answer:Since 1743 the Celsius scale has been based on 0 °C for the freezing point of water and 100 °C for the boiling point of water at 1 atm pressure. Prior to 1743 the values were reversed (i.e. the boiling point was 0 degrees and the freezing point was 100 degrees).
Explanation: i no it