Answer:
2:1
1.2 × 10² g
Explanation:
Step 1: Write the balanced combustion equation
CH₄ + 2 O₂ ⇒ CO₂ + 2 H₂O
Step 2: Establish the appropriate molar ratio
According to the balanced equation, the molar ratio of O₂ to CH₄ is 2:1.
Step 3: Calculate the moles of CH₄ required to react with 15 moles of O₂
We will use the previously established molar ratio.
15 mol O₂ 1 mol CH₄/2 mol O₂ = 7.5 mol CH₄
Step 4: Calculate the mass corresponding to 7.5 moles of CH₄
The molar mass of CH₄ is 16.04 g/mol.
7.5 mol × 16.04 g/mol = 1.2 × 10² g
The property of water which is described in the lines above is <u>cohesion.
</u>It refers to the fact that water molecules stick to other water molecules, i. e. to themselves, as opposed to sticking to another material, which happens with adhesion. Water and capillaries don't have any connection.<u>
</u>
As atomic number increases atomic radii also increase down group 1. ionisation energy down group 1 will also decrease because as atomic radii gets bigger there is less electrostatic force between nuclei and electrons so less energy needed to remove valence electron.
Answer:second law of thermodynamics
Explanation:the second law of thermodynamics states that the total entropy of an isolated system can never decrease over time and is constant if only if all processes are reversible.
Answer:
0.312 moles of H2O
Explanation:
no. of moles of ch4= mass ÷ molar mass
=2.5 ÷ 16.04
=0.156 moles of ch4
According to balanced chemical equation
CH4 : H2O
1 mole : 2 moles
0.156 moles : x moles
by cross multiplication
x= (0.156x2) ÷ 1
= 0.312 moles of H2O