Let's begin with the basic values that will be used in the solution.
The formula of propane is C3H8. It is an alkane, a hydrocarbon with the general formula of CnH2n+2. Notice that hydrocarbons have only Carbon and Hydrogen atoms. Its molar mass (M) is 44 g.
Molar Mass Calculation is done as like that
C=12 g/mol, H=1 g/mol. 1 mole propane has 3 moles Carbon atoms and 8 mole Hydrogen atoms. M(C3H8)= 3*12+ 8*1= 44 g
Combustion reaction of hydrocarbons gives carbon dioxide and water by releasing energy. That energy is called as enthalpy of combustion (ΔHc°).
ΔHc° of propane equals -2202.0 kj/mol. Burning of 1 mole C3H8 releases 2202 kj energy. Minus sign only indicates that the energy is given out ( an exothermic reaction ).
Let's write the combustion reaction.
C3H8 + O2 ---> CO2 + H20 (unbalanced) ΔHc° = -2202 kj/mol
Now, we calculate mole of 20 kg propane. Convert kilogram into gram since we use molar mass is defined in grams.
mole=mass/molar mass ; n=m/M ; n= 20000 g /44 (g/mol)=454 mole
1 mole propane releases 2202 kj energy.
454 mole propane release 2202 kj *454= 1000909 kj
The answer is 1000909 kj.
The number of particles in one mole is given be Avagadro's number <span>6.022×10^23
Multiply by number of moles.
3 ×10^-21 mol * 6.022 ×10^23 molecules/mol = </span><span>1,807 molecules
(rounded to nearest whole number)
</span>
Answer: try to understand coz the question is not valid
Explanation: Explain the relationship between forward and reverse reactions at equilibrium and predict how changing the amount of a reactant or product (creating a stress) will affect that relationship.For example (select one from each underlined section)If the amount of (reactant or product) increases, the rate of the (forward or reverse)reaction will (increase or decrease)to reach a new equilibrium. If the amount of (reactant or product) decreases, the rate of the (forward or reverse)reaction will (increase or decrease)to reach a new equilibrium. Procedure: Access the virtual lab and complete the inquiry experiment
Answer:
In atomic physics, the Bohr model or Rutherford–Bohr model, presented by Niels Bohr and Ernest Rutherford in 1913, is a system consisting of a small, dense nucleus surrounded by orbiting electrons—similar to the structure of the Solar System, but with attraction provided by electrostatic forces in place of gravity.