Answer:
587.18 in²
Step-by-step explanation:
In the above question, we are given the following values
Diameter = 11 inches
Radius = Diameter/2 = 11 inches/2 = 5.5 inches
Slant height = 28.5 inches.
We were asked to find how many square inches of paper will she need to cover the ENTIRE cone.
To solve for this, we would use formula for Total Surface Area of a Cone
Total Surface Area of a Cone = πrl + πr²
= πr(r + l)
Using 3.14 for π
Total Surface Area of a Cone
= 3.14 × 5.5( 5.5 + 28.5)
= 3.14 × 5.5 × (34)
= 587.18 in²
Therefore, Anita will need 587.18 square inches of paper to cover the entire cone.
For the given function f(t) = (2t + 1) using definition of Laplace transform the required solution is L(f(t))s = [ ( 2/s²) + ( 1/s) ].
As given in the question,
Given function is equal to :
f(t) = 2t + 1
Simplify the given function using definition of Laplace transform we have,
L(f(t))s = 
= ![\int\limits^\infty_0[2t +1] e^{-st} dt](https://tex.z-dn.net/?f=%5Cint%5Climits%5E%5Cinfty_0%5B2t%20%2B1%5D%20e%5E%7B-st%7D%20dt)
= 
= 2 L(t) + L(1)
L(1) = 
= (-1/s) ( 0 -1 )
= 1/s , ( s > 0)
2L ( t ) = 
= ![2[t\int\limits^\infty_0 e^{-st} - \int\limits^\infty_0 ({(d/dt)(t) \int\limits^\infty_0e^{-st} \, dt )dt]](https://tex.z-dn.net/?f=2%5Bt%5Cint%5Climits%5E%5Cinfty_0%20e%5E%7B-st%7D%20-%20%5Cint%5Climits%5E%5Cinfty_0%20%28%7B%28d%2Fdt%29%28t%29%20%5Cint%5Climits%5E%5Cinfty_0e%5E%7B-st%7D%20%5C%2C%20dt%20%29dt%5D)
= 2/ s²
Now ,
L(f(t))s = 2 L(t) + L(1)
= 2/ s² + 1/s
Therefore, the solution of the given function using Laplace transform the required solution is L(f(t))s = [ ( 2/s²) + ( 1/s) ].
Learn more about Laplace transform here
brainly.com/question/14487937
#SPJ4
(1) For the parabola on the bottom row, the domain would be R and the range would be y ≥ -5
(2) For the hyperbola on the bottom row, the domain would be R\{3} (since there is an asymptote at x = 3) and the range would be R\{4} (since there is an asymptote at y = 4)
(3) For the square root function on the bottom row, the domain would be x ≥ -5 and the range would be (-∞, -2]
(4) For the function to the very right on the bottom row, the domain would be R and the range would be (-∞, -3]
How do we help u??? we can’t graph for u
Ik but learn its simple but there is multiple answers