Use the Pythagorean Theorem of a² + b² = c² to solve for x.
x² + (x + 3)² = (√117)²
x² + x² + 6x + 9 = 117
2x² + 6x + 9 = 117
2x² + 6x + 9 - 117 = 0
2x² + 6x - 108 = 0
2x² + 18x - 12x - 108 = 0
2x(x + 9) - 12(x + 9) = 0
(2x - 12)(x + 9) = 0
x = - 9, 6
Length cannot be negative so you can't use - 9.
x = 6. Option C is your answer.
Answer:
Step-by-step explanation:
If the roots are 1 + 5i and 1 - 5i, then you need the factors that result from those roots. They are (x - 1 + 5i) and (x - 1 - 5i). Now what you do with those is FOIL them out. Doing that gives you the following:
(what a mess, huh?)
The good thing is that several of those terms cancel each other out. +5ix cancels out the -5ix; -5i cancels out the 5i; and the 2 -x terms combine to -2x. That leaves you with:

Obviously you're in the section in math that deals with complex (imaginary) numbers so you should know that i-squared is equal to -1. Making that replacement:

a = 1, b = -2, c = 25
Answer:
D. about 8.5 mi
Step-by-step explanation:
To go from Aesha to Josh, you go 6 units right and 6 units up.
Each unit is a mile, so you go 6 miles right and 6 miles up.
Think of each 6 mile distance as a leg of a right triangle, and the direct distance from one place to the other as the hypotenuse of the right triangle. Use the Pythagorean theorem to find the length of the hypotenuse.
a^2 + b^2 = c^2
The 6-mile legs are a and b. c is the hypotenuse.
(6 mi)^2 + (6 mi)^2 = c^2
c^2 = 36 mi^2 + 36 mi^2
c^2 = 72 mi^2
c = sqrt(72) mi
c = sqrt(36 * 2) mi
c = 6sqrt(2) mi
c = 6(1.4142) mi
c = 8.5 mi
Answer:
The distance between the hands is √(3)cm ≈ 1.73cm.
Step-by-step explanation:
In a standard clock, the angle between every number is 30°, therefore the angle between 12 and 2 will be 30° x 2 = 60°.
Looking at the diagram, to find c we can make use of our cosine formula
c² = a² + b² –2abCos(C°)
a = 2, b = 1 and C° = 60°
Therefore we have:
c² = 2² + 1² –2 x 2 x 1 x cos(60°) =
c² = 4 + 1 – 4 x 0.5 =
c² = 5 – 2 =
c² = 3
c = √(3) ≈ 1.73
Therefore, the distance between the hands is √(3)cm ≈ 1.73cm.