1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
worty [1.4K]
3 years ago
12

Help please!!!??? Brainliest for explanation

Mathematics
1 answer:
Sati [7]3 years ago
8 0
------------------------

You might be interested in
A) Find a particular solution to y" + 2y = e^3 + x^3. b) Find the general solution.
Reptile [31]

Answer:

a.P.I=\frac{e^{3x}}{11}+\frac{1}{2}(x^3-3x)

b.G.S=C_1Cos \sqrt2 x+C_2 Sin\sqrt2 x+\frac{1}{11}e^{3x}+\frac{1}{2}(x^3-3x}

Step-by-step explanation:

We are given that a linear differential equation

y''+2y=e^{3x}+x^3

We have to find the particular solution

P.I=\frac{e^{3x}}{D^2+2}+\frac{x^3}{D^2+2}

P.I=\frac{e^{3x}}{3^2+2}+\frac{1}{2} x^3(1+\frac{D^2}{2})^{-2}

P.I=\frac{e^{3x}}{11}+\frac{1-2\frac{D^2}{4}+3\frac{D^4}{16}+...}{2}x^3

P.I=\frac{e^{3x}}{11}+\frac{x^3-2\frac{\cdot3\cdot 2x}{4}}{2}+0} (higher order terms can be neglected

P.I=\frac{e^{3x}}{11}+\frac{1}{2}(x^3-3x)

b.Characteristics equation

D^2+2=0

D=\pm\sqrt2 i

C.F=C_1cos \sqrt2x+C_2 sin\sqrt2 x

G.S=C.F+P.I

G.S=C_1Cos \sqrt2 x+C_2 Sin\sqrt2 x+\frac{1}{11}e^{3x}+\frac{1}{2}(x^3-3x)

3 0
3 years ago
Jens garden Is 4feet wide and 4feet long.what is the area of jens garden
Sliva [168]
16 feet is the area
3 0
3 years ago
Read 2 more answers
Solve the equation by completing the square. Round to the nearest hundredth if necessary. x2 + 2x = 17
yawa3891 [41]
--------------------------------------------------------
Equation Given
--------------------------------------------------------
x² + 2x = 17

--------------------------------------------------------
Add the constant to make it perfect square
--------------------------------------------------------
x² + 2x + (2/2)² - ²(2/2)² = 17

--------------------------------------------------------
Evaluate the brackets
--------------------------------------------------------
x² + 2x + (1)² - ²(1)² = 17

--------------------------------------------------------
Form the perfect square
--------------------------------------------------------
(x + 1)² - 1 = 17

--------------------------------------------------------
Add 1 to both sides
--------------------------------------------------------
(x + 1)² = 17 + 1
(x + 1)² = 18

--------------------------------------------------------
Square root both sides
--------------------------------------------------------
√(x + 1)² = \pm√18

--------------------------------------------------------
Solve for x
--------------------------------------------------------
x = 4.24 - 1 or - 4.24 -1

x = 3.24 or - 5.24 (nearest hundredth)

--------------------------------------------------------
Answer: x = x = 3.24 or - 5.24
--------------------------------------------------------
7 0
3 years ago
Find the solution of the differential equation that satisfies the given initial condition. y' tan x = 3a + y, y(π/3) = 3a, 0 &lt
Paladinen [302]

Answer:

y(x)=4a\sqrt{3}* sin(x)-3a

Step-by-step explanation:

We have a separable equation, first let's rewrite the equation as:

\frac{dy(x)}{dx} =\frac{3a+y}{tan(x)}

But:

\frac{1}{tan(x)} =cot(x)

So:

\frac{dy(x)}{dx} =cot(x)*(3a+y)

Multiplying both sides by dx and dividing both sides by 3a+y:

\frac{dy}{3a+y} =cot(x)dx

Integrating both sides:

\int\ \frac{dy}{3a+y} =\int\cot(x) \, dx

Evaluating the integrals:

log(3a+y)=log(sin(x))+C_1

Where C1 is an arbitrary constant.

Solving for y:

y(x)=-3a+e^{C_1} sin(x)

e^{C_1} =constant

So:

y(x)=C_1*sin(x)-3a

Finally, let's evaluate the initial condition in order to find C1:

y(\frac{\pi}{3} )=3a=C_1*sin(\frac{\pi}{3})-3a\\ 3a=C_1*\frac{\sqrt{3} }{2} -3a

Solving for C1:

C_1=4a\sqrt{3}

Therefore:

y(x)=4a\sqrt{3}* sin(x)-3a

3 0
3 years ago
(WORTH 20 POINTS)
tresset_1 [31]
So the function is
f(x)=3( \frac{1}{3})^{ x }
the intial value is where x=0
where x=0, the value of f(0)=3

grouth is 1/3 but it is decay, so it might be correct, or not because it is decay
it is exponential decay
true it is a stretch of the funciton f(x)=(1/3)^x
when x=3, then f(3)=1/9


the true things are

The function shows exponential decay.
The function is a stretch of the function f(x) = (1/3)x .



6 0
3 years ago
Read 2 more answers
Other questions:
  • Please explain your answer and I'll mark the Brainliest! Which complex number is the graph showing?
    6·1 answer
  • Homework help answering math questions
    12·1 answer
  • Find the mean of the following data set.<br><br> 42, 45, 58, 63
    10·1 answer
  • Line m is parallel to line n. The measure of angle 3 is 86. What is the
    11·1 answer
  • 5.607 is what percent of 89 step by step
    11·1 answer
  • What is the value of the expression?
    15·1 answer
  • How can I do this using
    7·1 answer
  • Plsssssssssssssssssssss help meeeeeee on thisssss
    10·2 answers
  • (Drop downs:) 8,6,5.5<br> (Drop downs 2:) 10.5,8,5.5 <br> (Drop downs 3:) 33,22,11
    10·1 answer
  • Carpenter Charlie charges $15 per hour plus a flat rate of $100. Carpenter Chris charges $20 per hour plus a flat rate of $50. F
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!