Alright so I find it much easier to divide fractions by doing keep, switch flip. U might not have been taught this but it’s very helpful. So keep the first number, switch the division sign into multiplication sign and flip the fraction (so the decominator is now the numerator and vice versa)
Answer:
0.04746
Step-by-step explanation:
To answer this one needs to find the area under the standard normal curve to the left of 5 minutes when the mean is 4 minutes and the std. dev. is 0.6 minutes. Either use a table of z-scores or a calculator with probability distribution functions.
In this case I will use my old Texas Instruments TI-83 calculator. I select the normalcdf( function and type in the following arguments: :
normalcdf(-100, 5, 4, 0.6). The result is 0.952. This is the area under the curve to the left of x = 5. But we are interested in finding the probability that a conversation lasts longer than 5 minutes. To find this, subtract 0.952 from 1.000: 0.048. This is the area under the curve to the RIGHT of x = 5.
This 0.048 is closest to the first answer choice: 0.04746.
Answer:8 and 4
Step-by-step explanation:
8+4=12
8-4=4
(hope this helps)
F = t ⇨ df = dt
dg = sec² 2t dt ⇨ g = (1/2) tan 2t
⇔
integral of t sec² 2t dt = (1/2) t tan 2t - (1/2) integral of tan 2t dt
u = 2t ⇨ du = 2 dt
As integral of tan u = - ln (cos (u)), you get :
integral of t sec² 2t dt = (1/4) ln (cos (u)) + (1/2) t tan 2t + constant
integral of t sec² 2t dt = (1/2) t tan 2t + (1/4) ln (cos (2t)) + constant
integral of t sec² 2t dt = (1/4) (2t tan 2t + ln (cos (2t))) + constant ⇦ answer