Answer:
![\huge{ \boxed{ \sf{17.68 \: {cm}^{2} }}}](https://tex.z-dn.net/?f=%20%5Chuge%7B%20%5Cboxed%7B%20%5Csf%7B17.68%20%5C%3A%20%20%7Bcm%7D%5E%7B2%7D%20%7D%7D%7D)
Step-by-step explanation:
![\underline{ \text{Given}} :](https://tex.z-dn.net/?f=%20%5Cunderline%7B%20%5Ctext%7BGiven%7D%7D%20%3A%20)
![\longrightarrow \sf{ \: Length \: of \: a \: rectangle \: = \: 5.2 \: cm}](https://tex.z-dn.net/?f=%20%5Clongrightarrow%20%5Csf%7B%20%5C%3A%20Length%20%5C%3A%20of%20%5C%3A%20a%20%5C%3A%20rectangle%20%5C%3A%20%20%3D%20%20%5C%3A%205.2%20%5C%3A%20cm%7D)
![\longrightarrow{ \sf{Breadth \: of \: \: rectangle \: = \: 3.4 \: cm}}](https://tex.z-dn.net/?f=%20%5Clongrightarrow%7B%20%5Csf%7BBreadth%20%5C%3A%20of%20%5C%3A%20%20%5C%3A%20rectangle%20%5C%3A%20%20%3D%20%20%5C%3A%203.4%20%5C%3A%20cm%7D%7D)
![\underline{ \text{To \: find} } : \sf{Area \: of \: a \: rectangle}](https://tex.z-dn.net/?f=%20%5Cunderline%7B%20%5Ctext%7BTo%20%5C%3A%20find%7D%20%7D%20%3A%20%20%20%5Csf%7BArea%20%5C%3A%20of%20%5C%3A%20a%20%5C%3A%20rectangle%7D)
![\boxed{ \sf{Area \: of \: a \: rectangle \: = \: Length \: \times \: Breadth}}](https://tex.z-dn.net/?f=%20%5Cboxed%7B%20%5Csf%7BArea%20%5C%3A%20of%20%5C%3A%20a%20%5C%3A%20rectangle%20%5C%3A%20%20%3D%20%20%5C%3A%20Length%20%5C%3A%20%20%5Ctimes%20%20%5C%3A%20Breadth%7D%7D)
![\mapsto{ \sf{Area \: = \: 5.2 \: cm \: \times \: 3.4 \: cm}}](https://tex.z-dn.net/?f=%20%5Cmapsto%7B%20%5Csf%7BArea%20%5C%3A%20%20%3D%20%20%5C%3A%205.2%20%5C%3A%20cm%20%5C%3A%20%20%5Ctimes%20%20%5C%3A%203.4%20%5C%3A%20cm%7D%7D)
![\mapsto{ \sf{Area \: = \: 17.68 \: {cm}^{2} }}](https://tex.z-dn.net/?f=%20%5Cmapsto%7B%20%5Csf%7BArea%20%5C%3A%20%20%3D%20%20%5C%3A%2017.68%20%5C%3A%20%20%7Bcm%7D%5E%7B2%7D%20%7D%7D)
Hope I helped!
Best regards! :D
~![\text{TheAnimeGirl}](https://tex.z-dn.net/?f=%20%5Ctext%7BTheAnimeGirl%7D)
Answer:
The complex number
belongs to the third quadrant of the complex plane.
Step-by-step explanation:
Let be
. In the complex plane, if
(real component) and
(imaginary component), the number belongs to the third quadrant of the complex plane. The complex number
belongs to the third quadrant of the complex plane.
Answer:
16777216 is the answer....
Answer:
-768.21
Step-by-step explanation:
<em>I hope this helped you! Have a great day!</em>