We assume you intend
f(x) = 3x^-3
g(x) = 7x^-3
The y-value of g(x) will always be 7/3 times that of f(x). That is, g(x) > f(x).
Answer: Hi!
Since this is a right triangle, we already know that one angle is 90 degrees. Since the angles of a triangle all add up to 180 degrees, and the two unknown angles will be equal, all we have to do is subtract 90 from 180 and then divide the difference by 2!
180 - 90 = 90
90 ÷ 2 = 45
The two missing angles are each 45 degrees.
(x = 45 and y = 45)
Make sure to put the degrees sign after your answers!
Hope this helps!
Answer:
(lx-4
Step-by-step explanation:
Answer:
1 dimes and 9 quarters
Step-by-step explanation:
9 quarters = 2.75
1 dime = 10c
all together equals 2.85
Answer:
The mentioned number in the exercise is:
Step-by-step explanation:
To obtain the mentioned number in the exercise, first you must write the equations you can obtain with it.
If:
- x = hundredths digit
- y = tens digit
- z = ones digit
We can write:
- x = z + 1 (the hundreds digit is one more than the ones digit).
- y = 2x (the tens digit is twice the hundreds digit).
- x + y + z = 11 (the sum of the digits is 11).
Taking into account these data, we can use the third equation and replace it to obtain the number and the value of each digit:
- x + y + z = 11
- (z + 1) + y + z = 11 (remember x = z + 1)
- z + 1 + y + z = 11
- z + z +y + 1 = 11 (we just ordered the equation)
- 2z + y + 1 = 11 (z + z = 2z)
- 2z + y = 11 - 1 (we passed the +1 to the other side of the equality to subtract)
- 2z + y = 10
- 2z + (2x) = 10 (remember y = 2x)
- 2z + 2x = 10
- 2z + 2(z + 1) = 10 (x = z + 1 again)
- 2z + 2z + 2 = 10
- 4z + 2 = 10
- 4z = 10 - 2
- 4z = 8
- z = 8/4
- <u>z = 2</u>
Now, we know z (the ones digit) is 2, we can use the first equation to obtain the value of x:
- x = z + 1
- x = 2 + 1
- <u>x = 3</u>
And we'll use the second equation to obtain the value of y (the tens digit):
- y = 2x
- y = 2(3)
- <u>y = 6</u>
Organizing the digits, we obtain the number:
- Number = xyz
- <u>Number = 362</u>
As you can see, <em><u>the obtained number is 362</u></em>.