Answer:
108° Make me Brainliest pls
Answer:
Minimum value of function
is 63 occurs at point (3,6).
Step-by-step explanation:
To minimize :

Subject to constraints:

Eq (1) is in blue in figure attached and region satisfying (1) is on left of blue line
Eq (2) is in green in figure attached and region satisfying (2) is below the green line
Considering
, corresponding coordinates point to draw line are (0,9) and (9,0).
Eq (3) makes line in orange in figure attached and region satisfying (3) is above the orange line
Feasible region is in triangle ABC with common points A(0,9), B(3,9) and C(3,6)
Now calculate the value of function to be minimized at each of these points.

at A(0,9)

at B(3,9)

at C(3,6)

Minimum value of function
is 63 occurs at point C (3,6).
C, or the top right table. I don’t exactly feel like explaining unless you really want me to... in that case lmk.
Answer:

Step-by-step explanation:
Given,
Art electives = 3,
History electives = 4,
Computer electives = 5,
Total number of electives = 3 + 4 + 5 = 12,
Since, if a student chooses an art elective and a history elective,
So, the total combination of choosing an art elective and a history elective = 
Also, the total combination of choosing any 2 subjects out of 12 subjects = 
Hence, the probability that a student chooses an art elective and a history elective = 

Which is the required expression.