Answer:
0.033547 I think
Step-by-step explanation:
Answer:
Solutions are 2, -1 + 0.5 sqrt10 i and -1 - 0.5 sqrt10 i
or 2, -1 + 1.58 i and -1 - 1.58i
(where the last 2 are equal to nearest hundredth).
Step-by-step explanation:
The real solution is x = 2:-
x^3 - 8 = 0
x^3 = 8
x = cube root of 8 = 2
Note that a cubic equation must have a total of 3 roots ( real and complex in this case). We can find the 2 complex roots by using the following identity:-
a^3 - b^3 = (a - b)(a^2 + ab + b^2).
Here a = x and b = 2 so we have
(x - 2)(x^2 + 2x + 4) = 0
To find the complex roots we solve x^2 + 2x + 4 = 0:-
Using the quadratic formula x = [-2 +/- sqrt(2^2 - 4*1*4)] / 2
= -1 +/- (sqrt( -10)) / 2
= -1 + 0.5 sqrt10 i and -1 - 0.5 sqrt10 i
Answer:
aⁿ=4(−1)ⁿ⁻¹/3ⁿ
Step-by-step explanation:
use the formula an=a1rⁿ⁻¹
aⁿ=4(−1)ⁿ⁻¹/3ⁿ
Answer:
8.33333333333%
Step-by-step explanation:
50/6
1. n^2 -8n +16 = 25
Subtract 25 from both sides
n^2 - 8n + 16 - 25 = 0
Simplify
n^2 - 8n - 9 =0
Factor
(n-9)(n+1) = 0
Solve for n
n-9 = 0, n = 9
n+1 = 0, n = -1
Solution: 9,-1
2. C = b^2/25
Multiply both sides by 25:
25c = b^2
Take square root of both sides
b = +/-√25c
Simplify:
b = 5√C, -5√C
3. d = 16t^2 +12t
subtract d from both side:
16t^2 + 12t -d =0
Use quadratic formula to solve:
t = (3 +/-√(9-4d))/8
4. 5w^2 +10w =40
Subtract 40 from both side:
5w^2 + 10w -40 = 0
Factor:
5(w-2)(w+4)=0
Divide both sides by 5:
(w-2)(w+4)=0
Solve for w:
w-2 = 0, w = 2
w+4=0, w = -4
Solution: 2,-4