Answer:
The object at 50°C will have a higher kinetic energy.
Explanation:
Temperature is a measure of the average kinetic energy of the particles in an object. As you introduce more energy into the system (e.g. heat the object), the particles on average move faster because they have more kinetic energy.
Answer:
1.373 mol H₂O
General Formulas and Concepts:
<u>Chemistry - Atomic Structure</u>
- Reading a Periodic Table
- Using Dimensional Analysis
Explanation:
<u>Step 1: Define</u>
24.75 g H₂O
<u>Step 2: Identify Conversions</u>
Molar Mass of H - 1.01 g/mol
Molar Mass of O - 16.00 g/mol
Molar Mass of H₂O - 2(1.01) + 16.00 = 18.02 g/mol
<u>Step 3: Convert</u>
<u />
= 1.37347 mol H₂O
<u>Step 4: Check</u>
<em>We are given 4 sig figs. Follow sig fig rules and round.</em>
1.37347 mol H₂O ≈ 1.373 mol H₂O
A. High intermolecular forces of attraction. If there are high intermolecular forces, the molecules will need large energies to escape into the liquid. The substance will nave a high melting point.
The other options are <em>incorrect </em>because they are <em>weak force</em>s. They would cause <em>low melting points</em>.
The balanced reaction equation for the reaction between CH₃OH and O₂ is
2CH₃OH(l) + 3O₂(g) → 2CO₂(g) + 4H₂O(l)
Initial moles 12 24
Reacted moles 12 18
Final moles - 6 12 24
The stoichiometric ratio between CH₃OH and O₂ is 2 : 3
Hence,
reacted moles of O₂ = reacted moles of CH₃OH x (3/2)
= 12 mol x 3 / 2
= 18 mol
All of CH₃OH moles react with O₂.
Hence, the limiting agent is CH₃OH.
Excess reagent is O₂.
Amount of moles of excess reagent left = 24 - 18 mol = 6 mol
Answer:
1.
A= <u>sum</u><u>(</u><u>mass</u><u>*</u><u>percent</u><u> </u><u>abundance</u><u>)</u>
M 100
=(23.985*78.70)+(24.946*10.13)+(25.983*11.17)/100
= 24.3
2. The element is Magnesium.
3. 2412Mg,2512Mg and 2612Mg