Remember that:
number of moles = mass/molar mass
First, we get the molar mass of the nitrogen gas molecule:
It is known the the nitrogen gas is composed of two nitrogen atoms, each with molar mass 14 gm (from the periodic table)
Therefore, molar mass of nitrogen gas = 14 x 2 = 28 gm
Second we calculate the mass of the precipitate:
we have number of moles = 0.03 moles (given)
and molar mass = 28 gm (calculated)
Using the equation mentioned before,
mass = number of moles x molar mass = 0.03 x 28 = 0.84 gm
A is the answer
Hope it helps :)
Answer:
P₂ = 1312.88 atm
Explanation:
Given data:
Initial temperature = 25°C
Initial pressure = 1250 atm
Final temperature = 40°C
Final pressure = ?
Solution:
Initial temperature = 25°C (25+273.15 = 298.15 K)
Final temperature = 40°C ( 40+273.15 = 313.15 k)
The pressure of given amount of a gas is directly proportional to its temperature at constant volume and number of moles.
Mathematical relationship:
P₁/T₁ = P₂/T₂
Now we will put the values in formula:
1250 atm / 298.15 K = P₂/313.15 K
P₂ = 1250 atm × 313.15 K / 298.15 K
P₂ = 391437.5 atm. K /298.15 K
P₂ = 1312.88 atm
Sorry I’m only answering so I could upload
Carbon dioxide it should be water oxygen