Answer: Option (2) is the correct answer.
Explanation:
Atomic number of oxygen atom is 8 and its electronic distribution is 2, 6. So, it contains only 2 orbitals which are closer to the nucleus of the atom.
As a result, the valence electrons are pulled closer by the nucleus of oxygen atom due to which there occurs a decrease in atomic size of the atom.
Whereas atomic number of sulfur is 16 and its electronic distribution is 2, 8, 6. As there are more number of orbitals present in a sulfur atom so, the valence electrons are away from the nucleus of the atom.
Hence, there is less force of attraction between nucleus of sulfur atom and its valence electrons due to which size of sulfur atom is larger than the size of oxygen atom.
Thus, we can conclude that the oxygen atom is smaller than the sulfur atom because the outer orbitals of oxygen are located closer to the nucleus than those of sulfur.
The heat (Q) required to raise the temp of a substance is:<span>Q=m∗Cp∗ΔT</span><span> where m is the mass of the object (25.0g in this case), Cp is the specific heat capacity of the substance (for water Cp = 1.00cal/gC, or 4.18J/gC,
and Dt is the change in temp.
You'll have to solve this twice, once with the Cp in calories, and once with the Cp in joules.
</span><span>1380.72 Joules</span>
I'm not 100% sure but I'm leaning towards D. :)
No, x-rays do not travel slower than infrared radiation or even the opposite. Both are travelling in vacuum therefore they travel at same speed. They differ in the frequency of the electromagnetic waves.
Answer:
Zinc
Explanation:
The specific heat capacity can be described as the amount of heat required to raise the temperature of a substance by one degrees Celsius. It is represented by C or S. The greater the carrying capacity of a substance, the more will be the heat required for that substance.
As we can see in the information given in the question, the specific heat capacity of zinc is the lowest as compared to steel, water and aluminium. Hence, zinc is the correct option.