Answer:
What is the effect of power/magnification on the frequency and size of organelles under a microscope?
Explanation:
Organelles within the cell are responsible for carrying out various functions. Some cells are more specialized than others, and may have particular organelles at a higher frequency, or showing a variation in size; sub-cellular structures become more visible at higher magnifications under the microscope.
Hypotheses:
- organelle A's frequency decreases while B's frequency increases at higher magnifications
- organelle A's size increases while B's size decreases at higher magnifications
<em />
<em>Dependent variables: size and frequency cell organelles</em>
<em>Independent variable: power/magnification at low (x4), medium(x10) and high (x40)</em>
<em>Controlled variables: Type of organelles, microscope used, cell examined, </em>
Method:
1. Examine the organelles A and B in a cell mounted on a slide; use the fine adjustment to focus on the cell.
- Frequency: What is the average number of organelle A versus B, seen at low (x4), medium (x10) and high (x40) magnifications?
- Size: Measure the average diameter of organelle A versus B using an ocular micrometer at low, medium and high magnification.
2. Record and tabulate observations.
Answer: Proteins are made using DNA as a template. The DNA is turned into RNA, and the RNA is then turned into DNA.
A change in these nucleotides could end up making some part of the protein different. A single nucleotide change could be silent (no change in the protein) or could change a single amino acid (amino acids are the building blocks of proteins). If that was an important amino acid, the protein might not function at all! A silent change can occur because the same set of nucleotides sometimes makes the same final amino acid (for example, reading "gcc" "gca" "gcg" or "gct" nucleotides all mean "alanine" amino acid).
The deletion of a single nucleotide, or the addition of one, can change the entire sequence of amino acids that come after it! Nucleotides are read in sets of three, so this throws off how the DNA is read. If would be like turning "The brown fox jumps over the dog" into "The gbrow nfo xjump sove rth edo g". Completely different! All of the words are thrown off.
I know it is long but I hope it helped
:D
They reproduce over the years making it less frog to survive
Answer:
Selection that acts, over evolutionary time, to enhance traits that increase an individual's ability to mate frequently or with quality partners is known as <u>sexual selection.</u>
Explanation:
Sexual selection : The process through which males and females attempt to maximise their chances of reproductive success is called sexual selection. It is a form of natural selection. Charles Darwin suggested sexual selection. Animals compete with others of the same species for the chance to mate.
<u>For example:</u> Male widow-bird grows exceptional long tail feathers, females lack tail feathers.